跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余興寧
Hsing-ning Yu
論文名稱: 電紡絲製備幾丁聚醣/褐藻酸鈉之奈米複合纖維結構對細胞貼附與增生之研究
Electrospinning of Chitosan/Alginate Composite Nanofibrous Structures for Cell Adhesion and Proliferation
指導教授: 胡威文
Wei-wen Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 細胞褐藻酸鈉幾丁聚醣電紡絲
外文關鍵詞: electrospinning, chitosan, alginate, cell
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了精確調控生物材料表面性質以利於組織工程的應用,我們研
    發了利用電紡絲技術製備幾丁聚醣/褐藻酸鈉之複合纖維。首先,先
    進行純幾丁聚醣與純褐藻酸鈉的電紡絲研究。聚氧化乙烯(PEO)分別
    摻入於幾丁聚醣與褐藻酸鈉溶液中,並藉由掃描式電子顯微鏡(SEM)
    研究高分子組成對於纖維型態的影響。利用高分子溶液的黏度分析證
    實了高濃度的高分子造成的高黏度,影響纖維絲結構的型態。之後我
    們研究進料流率與纖維沉積的關係,藉由控制幾丁聚醣/聚氧化乙烯
    和褐藻酸鈉/聚氧化乙烯溶液的進料流率,可得到不同沉積比的奈米
    纖維。最後,所合成的複合奈米纖維被應用於細胞培養,因細胞在幾
    丁聚醣與褐藻酸鈉纖維絲的型態不同,我們可以透過奈米纖維的比例
    調控細胞的型態。在生物相容性上,發現幾丁聚醣與褐藻酸鈉的奈米
    纖維可以改善膜的細胞活性,此外複合纖維甚至比幾丁聚醣與褐藻酸
    鈉纖維絲有更好的生物相容性。這些結果表示,奈米纖維的比例可以
    透過同時紡絲技術加以控制,我們能夠操控複合材料的表面特性,這
    應有利於在生物材料的應用。


    To custom-tailor biomaterial surfaces for tissue engineering
    application, we developed chitosan/alginate composite surfaces using
    electrospinning technique. Firstly, chitosan and alginte were solely
    electrospun, respectively. Poly (ethylene oxide) (PEO) was added to both
    chitosan and alginte solutions, and the effect of polymer composition on
    fibrous morphology was studied through scanning electrical microscopy
    (SEM). In addition, viscosities of polymer solution were also analyzed,
    demonstrating that higher concentrations of polymer caused higher
    viscosities, which directly determined the morphology of nanofibrous
    structure. Then, the relationship between flow rates and fiber deposition
    was also studied. By controlling the flow rates of chitosan/PEO and
    alginate/PEO solution separately, these nanofibers were able to be spun
    simultaneously with different deposition ratios. Finally, the composite
    nanofibrous surfaces were applied for cell culture. Because cell
    morphologies were different in chitosan and alginate nanofibrous surfaces,
    we may regulate cell morphologies by controlling the ratios of nanofibers,
    About biocompatibility, it was found that nanofibers can improve the cell
    viability over chitosan and alginate films. In addition, composite
    nanofibers even demonstrated greater biocompatibility than that of
    chitosan and alginate fibers. These results suggested that the ratio of
    nanofiber can be finely controlled through simultaneous electrospinning
    technique, and we may manipulate composite surface properties, which
    should be beneficial to biomaterial application.

    III 目錄 摘要................................................................................................................................ I Abstract......................................................................................................................... II 目錄..............................................................................................................................III 圖目錄...........................................................................................................................V 第一章 緒論............................................................................................................1 1-1 背景............................................................................................................1 1-2 實驗目的....................................................................................................3 第二章 文獻回顧....................................................................................................5 2-1 組織工程....................................................................................................5 2-2 電紡絲於組織工程之應用........................................................................7 2-3 電紡絲簡介..............................................................................................11 2-3-1 電紡絲技術之發展......................................................................11 2-3-2 電紡絲之優點..............................................................................12 2-3-3 電紡絲原理..................................................................................12 2-3-4 影響電紡絲之因素......................................................................14 2-4 幾丁聚醣..................................................................................................16 2-4-1 幾丁聚醣之來源..........................................................................16 2-4-2 幾丁聚醣之性質..........................................................................17 2-4-3 電紡絲製備幾丁聚醣於組織工程應用......................................17 2-5 褐藻酸鈉..................................................................................................20 2-5-1 褐藻酸鈉之來源..........................................................................20 2-5-2 褐藻酸鈉之性質..........................................................................20 2-5-3 電紡絲製備褐藻酸鈉於組織工程應用......................................21 2-6 複合材料..................................................................................................22 2-6-1 複合材料之簡介..........................................................................22 2-6-2 複合材料於組織工程之應用......................................................23 2-7 電紡絲製備複合纖維..............................................................................25 2-8 電紡絲製備複合纖維於組織工程應用..................................................26 2-9 幾丁聚醣與褐藻酸鈉之複合材料..........................................................28 第三章 實驗..........................................................................................................32 3-1 實驗藥品..................................................................................................32 3-2 實驗儀器..................................................................................................33 3-3 實驗方法..................................................................................................35 3-3-1 電紡絲溶液之配製......................................................................35 3-3-2 纖維製備......................................................................................36 3-3-3 掃描式電子顯微鏡影像分析(SEM)...........................................36 3-3-4 黏度量測......................................................................................36 3-3-5 收集量量測..................................................................................37 3-3-6 混合纖維製備..............................................................................37 3-3-7 材料表面分析..............................................................................37 3-3-8 材料之生物適合性......................................................................39 第四章 結果與討論..............................................................................................41 4-1 電紡絲測試..............................................................................................41 4-1-1 Chitosan/PEO 之纖維型態測試..................................................42 4-1-2 Chitosan/PEO 溶液之黏度測量..................................................51 4-1-3 Alginate/PEO 之纖維型態測試 ..................................................54 4-1-4 Alginate/PEO 溶液之黏度測量 ..................................................63 4-2 chitosan/alginate 複合纖維製備 .............................................................66 4-2-1 纖維之收集量測試......................................................................66 4-2-2 纖維之螢光染色測定..................................................................69 4-2-3 X 射線光電子能譜儀測量..........................................................71 4-3 材料表面性質測定..................................................................................75 4-3-1 傅立葉轉換紅外線光譜分析儀(FT-IR) .....................................75 4-3-2 接觸角(contact angle)分析..........................................................78 4-4 生物適合性..............................................................................................80 4-4-1 纖維絲對細胞的貼附型態之行為..............................................80 4-4-2 細胞活性分析(MTT assay).........................................................85 4-4-3 乳酸脫氫酶(LDH )細胞毒性分析..............................................87 第五章 結論..........................................................................................................90 第六章 參考文獻..................................................................................................92

    1. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 二十四卷三期: p. 431-435.
    2. R. Langer, J.P.V., Tissue engineering. Science, 1993. 260: p. 920-6.
    3. P.H. Krebsbach, e.a., Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Human Gene Therapy, 2000. 11(8): p. 1201-1210.
    4. J.P. Vacanti, R.L., Tissue engineering : the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 1999. 354: p. S132-S134.
    5. Yoshimoto H, S.Y.M., Vacanti J P, et al., Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Biomaterials, 2003. 24: p. 2077-2082.
    6. G.E. Kempson, H.M., C. Pollard, et al., The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta, 1973. 297: p. 456-472.
    7. Amornsakchai T, C.D.L.M., Jawad S A, et al., Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Mater Sci, 1993. 28: p. 1689-1698.
    8. N. Bhattarai, D.E., O. Veiseh, F.A. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005. 26(31): p. 6176-84.
    9. J. L. Lowery, N.D., G. C. Rutledge, Effect of fiber diameter,pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials, 2009. 31: p. 491-504.
    10. X. H. Chu, X.L.S., Z.Q. Feng, Z.Z. Gu, Y.T. Ding, Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol. Biotechnol, 2009. 31(3): p. 347-52.
    11. Z.Q. Feng, X.H.C., N.P. Huang, T. Wang, Y. Wang, X. Shi, Y. Ding, Z.Z. Gu The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. 2009. 30(14): p. 2753-63.
    12. L.Ghasemi-Mobarakeh, M.P.P., M. Morshed, et. al., Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 2008. 29(34): p. 4532-9.
    13. Formhals, A., Process and apparatus for preparing artificial threads. US Patent 1, 1934.
    14. Formhals, A., Method and apparatus for spinnin. US Patent 1, 1944.
    15. Taylor, G.I., Disintegration of water drops in an electric fiedld. Proc. R. Soc. London, 1964. 280: p. 383-397.
    16. Taylor, G.I., The stability of horizontal fluid interface in a vertical electric field. J. Fluid Mech, 1965. 22(1).
    17. D.H. Reneker, I.C., Nanometre diameter fibres of polymer,produced by electrospinning. Nanotecnology, 1996. 7: p. 216-223.
    18. D. Li, Y.X., Electrospinning of nanofibers:Reinventing the wheel? Adv, Mater., 2004. 16.
    19. Yin-Chi Wang, C.W., Temperature effects on preparing polymer fibers via electrospinning. 2006.
    20. 林兼民, 邱., Preparation and properties of a weak acid ion exchange polyacrylonitrile (PAN) nanofiber membrane. 2012.
    21. X. Zong, K.K., D. Fang, S. Ran, B.S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiver membranes. Polymer, 2002: p. 4403-4412.
    22. J.S. Choi, S.W.L., L. Jeong, S.H. Bae, B.C. Min, J.H. Youk, W.H. Park, Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Biol. Macromol, 2004: p. 249-256.
    23. J.S. Lee, K.H.C., H.D. Ghim, S.S. Kim, D.H. Chun, H.Y. Kim, W.S. Lyoo Role of molecular weight of atactic poly(vinyl alcohol) in the structure and properties of PVA nanofabric prepared by electrospinning. J. Appl. Polym. Sci., 2004: p. 1638-1646.
    24. C.J. Buchko, L.C.C., Y. Shen, D.C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999: p. 7397-7407.
    25. G.C. Rutledge, Y.L., S. Fridrikh, S.B. Warner, V.E. Kalayci, P. Patra, Electrostatic spinning and properties of ultrafine fibers. NTC. Annu. Rep, 2001: p. M01-D22.
    26. M.M. Demir, I.Y., E.Yilgor, B.Erman Electrospinning of polyurethane fibers. . Polymer 2002: p. 3303-3309.
    27. S.Hirano, Wet spun chitosan-collagen fibers,their chiemical N-modifications,and blood compatibility. Biomaterials, 2000: p. 997-1003.
    28. MNVR, K., A review of chitin and chitosan applications. 2000: p. 1–27.
    29. T. Chandy, C.P.S., Chitosan-as a biomaterial. Biomater, 1990: p. 1-24.
    30. B. Min, S.W.L., J.N. Lim,Y. You,T.S. Lee, P.H. Kang, W.H. Park, Chitin and chitosan nanofibers :electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 2004: p. 7137-7142.
    31. X.Geng, O.H.K., J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomater., 2005: p. 5427-5432.
    32. L. Martinova, D.L., Eletrospun chitosan based nanofibers. Trends Biomater. Artif. Organs, 2009: p. 170-201.
    33. K. Desai, K.K., J. Li, S. Zivanovic, Morphological and surface properities of electrospun chitosan nanofibers. Biomacromol, 2008: p. 1000-6.
    34. W.K. Chang, G.P.M., D.Z. Yang, D.D. Su, G.Q. Song, J. Nie, Electrospun ultrafine composite fibers from organic-soluble chitosan and poly(ethylene oxide). J. Appl. Polym. Sci., 2009: p. 2113-2120.
    35. R.E. Gorga, S.S.O., et al., Fabrication and characterization of electrospun chitosan nanofibers formed via templation with polyethylene oxide. Biomacromol, 2008: p. 2523-9.
    36. C. Kriegel, K.M.K., D.J. McClements, J. Weiss, Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer, 2009: p. 189-200.
    37. C.W. Lou, J.H.L., K.C. Yen, C.T. Lu, C.Y. Lee, Preparation of polyethylene oxide/chitosan fiber membranes by electrospinning and the evaluation of biocompatibility. Textile Research J., 2008: p. 254-257.
    38. A. Neamnark, N.S., P. Pavasant, R. Rujiravanit, P. Supaphol, In vitro biocompatibility of electrospun hexanoyl chitosan fibrous scaffolds towards human keratinocytes and fibroblasts. Eur. Polym., 2008: p. 2060-2067.
    39. Y.S. Zhou, D.Z.Y., X.M. Chen, Q. Xu, F.M. Lu, J. Nie, Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromol, 2008: p. 349-354.
    40. Y.Y. Wang, L.X.L., Z.Q. Feng, Z.D. Xiao, N.P. Huang, Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed. Mater., 2010.
    41. Y.J. Lee, D.S.S., O.W. Kwon, W.H. Park, H.G. Choi, Y.R. Lee, S.S. Han, S.K. Noh, W.S. Lyoo, Preparation of atatic poly(vinyl alcohol)/Sodium alginate blend nanowebs by electrospinning. J. Appl. Polym. Sci., 2006: p. 1337-1342.
    42. S.K. Bajpai, S.S., Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Gunctional Polymers, 2004: p. 129-140.
    43. R. V. Iozzo, A.D.M., FASEB J, Proteoglycans of the extracellular environment:clues from the gene and protein side offer novel perspectives in molecular diversity and function. Biol Sci, 1996: p. 598-614.
    44. Sun ZJ, L.G., Li SY, Yu WT, Wang W, Xie YB, et al., Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. . Appl Microbiol Biotechnol, 2007: p. 1419–27.
    45. E. Alsberg, K.W.A., A. Albeiruti, R. T. Franceschi, D. J. Mooney, Cell-interactive alginate hydrogels for bone tissue engineering. Biomater and Bioeng, 2001: p. 202-2029.
    46. Z. Li, M.Z., Chitosan-alginate as scaffolding material for cartilage tissue engineering. J. Biomed Mater Res, 2005: p. 485-93.
    47. N. Bhattarai, Z.L., D. Edmondson, M. Zhang, Alginate-Based nanofibrous scaffolds:structural,mechanical,and biological properties. Adv. Mater., 2006: p. 1463-1467.
    48. H. Nie, A.H., J. Zheng, S. Xu, J. Li, C. C. Han, Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromol, 2008: p. 1362-5.
    49. J.W. Lu, Y.L.Z., Z.X. Guo, P. Hu, J. Yu, Electrospinning of sodium alginate with poly(ethylene oxide). Polymer, 2006: p. 8026-8031.
    50. N. Bhattarai, M.Z., Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnol. 2007.
    51. S. Safi, M.M., S. A. Hosseini Ravandi, M. Ghiaci, Study of electrospinning of sodium alginate,blend solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide). J. Appl. Polym. Sci., 2007: p. 3245-3255.
    52. G.H. Kim, K.E.P., Alginate-Nanofibers fabricated by an electrohydrodynamic process. Polym. Eng and Sci, 2009: p. 2242-2248.
    53. S.A. Park, K.E.P., W.D. Kim, Preparation of sodium alginate/poly(ethylene oxide) blend nanofibers with lecithin. Macromol. Res., 2010: p. 891-896.
    54. S.I. Jeong, M.D.K., C.A. Bonino, S.A. Khan, E. Alsberg, Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci., 2010: p. 934-43.
    55. P.A. Gunatillake, R.A., Biodegradable synthetic polymers for tissue engineering. ECM., 2003(1473-2262).
    56. X.D. Hu, G.L.W., Research progress of electrospun nanofibers scaffold in nerve tissue engineering. Chinese. J, 2010: p. 1133-7.
    57. Wu Cheng-jun, H.R., Lu Ren-rong, Literature review of scaffold materials in cartilage tissue engineering. Chinese. Journal of Tissue Engineering Research, 2012. 16.
    58. R. Langer, D.A.T., Designing materials for biology and medicine. Nature 2004: p. 487-492.
    59. B. Duan, X.Y., Y. Zhu, X.L Li, Y. Zhang, K.D. Yao, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur. Polym. J. , 2006: p. 2013-2022.
    60. Z. Li, H.R.R., K.D. Hauch, D. Xiao, M. Zhang, Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomater, 2005: p. 3919-28.
    61. A. Chen, D.H., R. Wang, Analysis of chitosan-alginate bone scaffolds. Rutgers University, New Jersey Governor’s School of Engineering & Technology. , 2009.
    62. Yan XL, K.E., Lim LY., PEC films prepared from chitosanalginate coacervates. Chem Pharm Bull., 2000: p. 941–6.
    63. H. Deng, X.Z., X.Wang, C. Zhang, B. Ding, Q. Zhang, Y. Du Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr. Polym, 2010: p. 474-479.
    64. Wang LH, K.E., Lim LY, Chitosan ± alginate ± CaCl2 system for membrane coat application. J Pharm Sci, 2001: p. 1134–42.
    65. Li ZS, R.H., Hauch KD, Xiao DM, Zhang MQ, Chitosan alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005: p. 3919–28.
    66. Yang Y, H.Q., Duan L, Cui Y, Li J, Assembled alginate/chitosan nanotubes for biological application. Biomaterials, 2007: p. 3083–90.
    67. J.Z. Wang, X.B.H., J. Xiao, et al., Spray-spinning : a novel method for making alginate/chitosan fibrous scaffold. J Mater Sci:Mater Med, 2010: p. 497-506.
    68. S.I. Jeong, M.D.K., C.A. Bonino, J. E. Samorezov, S.A. Khan, E. Alsberg, Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds. Tissue Eng Part A, 2011: p. 59-70.
    69. O. Gaserod, O.S., G. Skjak-Braek, Microcapsules of alginate-chitosan-I. A quantitative study of the interaction between alginate and chitosan. Biomater., 1998: p. 1815-1825.
    70. R.R. Klossner, H.A.Q., A.J. Coughlin,W. E. Krause, Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules. 2008: p. 2947-2953.
    71. Wang Huiya, H.Z., Cao Xiaomiao, Shi Liuhua, Ying Sanjiu Study of superfine melamine fibers by reaction electrospinning. Article 10.3981/j, 2011.
    72. 賴英煌,邱雯藝,洪偉修, 同步輻射 X-ray光電子能譜在表面化學之研究. Chemistry 2002. 60: p. 381-390.
    73. S.S Silva, S.M.L., M.E. Gomes, J. Benesch, I. Pashkuleva, J.F. Mano, R.L. Reis Plasma surface modification of chitosan membranes: Characterization and preliminary cell response studies. Macromol. BioSci, 2008 p. 568-576.
    74. H.L. Cao, Y.D.H., Z.Q. Zhang, Mechanisms of surface modification of PAN-based carbon fibers by electrochemical treatment in aqueous ammonium bicarbonate. ACTA. Mater. Compositate Sinica, 2004.
    75. B. Sarmento, D.F., F. Veiga, A. Ribeiro, Characterization of insulin-loaded alginate nanoparticles produced by ionotropic per-gelation through DSC and FTIR studies. Carbohydrate Polym, 2006: p. 1-7.
    76. Sun ZJ, L.G., Li SY, Yu WT, Wang W, Xie YB, et al, Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. . Appl Microbiol Biotechnol., 2007: p. 1419–27.
    77. T. Takahashi, K.T., Y. Machida, T. Nagai Characteristics of polyion-complex of chitosan with sodium alginate and sodium polyacrylate. Int. J. Pharm, 1990: p. 35-41.
    78. C.J. Brine, P.A.S., J.P. Zikakis, Advances in chitin and chitosan. Int. Polym, 1992.
    79. L. Wang, E.K., L.Y. Lim, Chitosan-alginate-CaCl(2) system for membrane coat application. J. Pharm. Sci, 2001: p. 1134-42.
    80. T.W. Chen, S.J.C., G.C.C Niu, Y.T. Hsu, S.M. Kuo Alginate-Coated chitosan membtane for guided tissue regeneration. J. Appl. Polym. Sci., 2006: p. 4528-4534.
    81. Smetana, K.J., Cell biology of hydrogels. Biomater. Biomater, 1993: p. 1046-1050.
    82. J. Fukuda, A.K., Y. Yeo, X. Yang, J. Yeh, G. Eng Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomater, 2006: p. 5259-67.
    83. Mincheva, R., et al., Hydrogels from chitosan crosslinked with poly(ethylene glycol) diacid as bone regeneration materials. E-Polymers, 2004.

    QR CODE
    :::