跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林自威
Tzu-wei Lin
論文名稱: 應用物理氣相沉積法製備低電阻高透光氧化物/銀複合薄膜之研究
Low resistance and high visible transmittance of transition metal oxide/silver composites through physical vapor deposition
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 130
中文關鍵詞: 透明導電氧化物透明導電薄膜介電層-金屬-介電層
外文關鍵詞: TCO films, dielectric-metal-dielectric
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以濺鍍法輔以活性電漿O2/Ar氣體比例為6%製備的非晶相的MoOx層,表現出高的可見光透射率和2.7eV大的能帶間隙。對於雙層A(10)M,適當的電漿O2/Ar氣體比例作用下可以提高可見光透光率並降低紅外線穿透率。在嵌入Ag層厚度> 10nm的情況下,MAM三層結構具有優異的導電性,高可見光透光率及低近紅外線透射率。插入的10nm 銀層可以有效地將MAM層結構電阻降低到4.83Ω/ sq,於可見波長為550nm的MA(10)M的品質係數可以達5.3×10-2-1,MoOx層的光學和電學性質是MoOx介電層厚度的函數。本研究結果顯示,具有最佳Ag和MoOx厚度的MoOx多層結構是可應用於透明導電氧化物和熱反射鏡。將銀層暴露於電漿O2/Ar氣體比例為6%混合物下,該方法能有效地調控MAM的可見光透射率而不降低導電率。這種MoOx / Ag / MoOx堆疊結構可望成為透明導電電極於一般玻璃或柔性基板上的應用。
    以濺鍍法輔以活性電漿O2/Ar氣體比例為1%製備的ITO層及非晶相ITO/Ag多層結構,表現出高可見光透光率及3.62eV大能帶間隙。在IAI多層中,由HRTEM展現Ag和ITO層之間的界面明顯邊界。當嵌入的Ag層> 10nm時,所製備的IAI三層結構在波長550nm和600nm的波長下表現出優異的導電性和高的可見光透光率。插入的10nm Ag層可以有效地降低I(60)A(10)I(60)堆疊層的電阻降至5.8Ω/ sq,IA(10)I在可見波長為550nm及600 nm的品質係數分別可達1.09×10-1-1和1.28×10-1-1。此對稱結構IAI於可見光透光率隨著ITO厚度的減小而呈現藍位移。 在退火溫度小於400 oC ,IAI的Rs隨著RTA溫度升高而降低;退火溫度大於 400℃時的透光率顯示沒有下降並產生藍位移,此歸因於RTA後ITO層的結晶改善。在400℃退火處理後,可見光波長為550nm的IA(10)I的品質係數可達1.56×10-1-1。本研究結果顯示,具有最佳Ag和ITO厚度的ITO多層結構可望作為透明導電氧化物和藍色發光二極管電極上之應用。
    TAW和WAW多層膜在室溫下以電子束蒸鍍在PES上,研究結晶度、微觀結構、電學和光學特性。觀察到在TAW堆疊層中具有(111)面的優選取向的多晶Ag層。不對稱結構TAW多層於HRTEM展示Ag/TiOx與Ag/WO3 BL之間有明顯的邊界,並且不會形成氧化物。在嵌入的Ag層> 15nm的情況下,T(40)A(15)W(40)三層結構在波長550nm處具有夠高的可見光(93.7%)及低近紅外光透光率(14.4%)並表現出優異的導電性。插入的15nmAg層可以有效地將TAW堆疊層的電阻降低至3.93Ω/ sq,而在可見光波長為550 nm時,最佳TA(15)W有最高品質係數可達到1.210-1 -1,優於文獻的值[2,19-22]。由於上層TiOx有較佳的抗濕能力,TAW層比WAW層有較佳的濕度穩定性。本研究結果顯示,非對稱結構多層的TA(15)W是可望作為透明導電氧化物和熱反射鏡於柔性基底之應用


    The MoOx layers with amorphous phases fabricated by reactive sputtering with plasma at an O2/Ar of 6% for the reactive gas exhibited a high visible transmittance and a large optical band gap of 2.7 eV. For the A(10)M bilayer, an appropriate O2/Ar plasma can improve the transparency and reduce the IR transmittance. With an embedded Ag layer > 10 nm, the MAM sandwiched layers exhibit superior conductivity with sufficiently high visible and low NIR transmittance. The inserted 10-nm Ag layer can effectively reduce the resistance of the MAM stacked layer down to 4.83 Ω/sq, and the FOM of MA(10)M at a visible wavelength of 550 nm can reach 5.310-2. The optical and electrical properties of the MoOx layer are a function of the thickness of the MoOx dielectric layer. Our results suggest that a MoOx multilayer with appropriate Ag and MoOx thicknesses is a promising candidate for application as a TCO and heat mirror. The Ag layer was exposed to plasma induced by an in-situ 6% O2/Ar mixture, and this approach was demonstrated to tune the visible transmittance of MAM effectively without degradation of the Rs. Such a MoOx/Ag/MoOx stacked structure might be a promising electrode in potential applications of transparent conductive oxides on conventional glass or flexible substrate.
    The ITO layers and ITO/Ag multi-layers with amorphous phases fabricated by reactive sputtering with plasma through O2/Ar mixture of 1% severed as the reactive gas exhibited high visible transmittance and a large optical band gap of 3.62 eV. In the IAI multilayer, the interface between the Ag and ITO layer revealed by HRTEM shows a distinct boundary. With an embedded Ag layer > 10 nm, the as-prepared IAI sandwiched layers exhibit superior conductivity with high visible transmittance at the wavelength of 550 and 600 nm. The inserted 10-nm Ag layer can effectively reduce the resistance of the I(60)A(10)I(60) stacked layer down to 5.8 Ω/sq, and the FOM of IA(10)I at a visible wavelength of 550 and 600 nm can reach up to ~ 1.09×10-1 and 1.28×10-1. The visible transmittance of symmetric IAI sample shows a blue-shift with a decreasing in the ITO thicknesses. The Rs of IAI sample reduced as an increasing RTA temperature < 400 oC. The transmittance without degradation in the annealed samples > 400 oC also showed blue-shift, which is attributed to the crystallization of ITO layer after RTA. The FOM of IA(10)I at a visible wavelength of 550 nm can reach up to ~ 1.56×10-1-1 after annealing treatment at 400 oC. Our results suggest that a ITO multilayer with appropriate Ag and ITO thicknesses is a promising electrode candidate for application as a TCO and blue light emitting diode.
    The crystallinity, microstructure, and electrical and optical properties of TAW and WAW multilayers on PES or glass through E-beam evaporation at room temperature were studied. The polycrystalline Ag layer with preferred orientation along the (111) plane in the TAW stacked layers were observed. In the asymmetrical TAW multilayer as revealed by HRTEM, both of the interface between the Ag/TiOx capping layer and Ag/WO3 BL show distinct boundaries and no oxide formation. With an embedded Ag layer > 15 nm, the T(40)A(15)W(40) sandwiched layers exhibit superior conductivity with sufficiently high visible (> 93.7%) at the wavelength of 550 nm and low NIR transmittance (14.4%). The inserted 15-nm Ag layer can effectively reduce the resistance of the TAW stacked layer down to 3.93 Ω/sq, and the highest FOM of the optimal TA(15)W at a visible wavelength of 550 nm can reach as high as 1.210-1 -1, which is higher than the value of the previous report [2, 19-22]. The TAW layer also shows better moisture stability than that of the WAW sandwiched layer owing to the suppression of moisture by the TiOx top layer. Our results suggest that an asymmetrical TA(15)W multilayer is a promising candidate for application as a robust TCO and heat mirror on flexible substrate.

    Abstract I Contents VI Chapter 1 Introduction 1 1.1 Brief review of progress in transparent conductive electrode 1 1.2 Requirement and applications in transparent conductive oxide 3 1.3 Motivation of this work 3 Chapter 2 Background of transparent electrode 5 2.1 Review of TCO 5 2.2 Categories of TCO 7 2.1.1 Carbon nanotube/graphene 7 2.2.2 A thin layer of metal and metal grids 9 2.2.3 Metal nanowires 11 2.2.4 Metal oxide 12 2.3 Principle and fabrication of dielectric/metal/dielectric 13 2.4 The applications of DMD in TCO 20 2.5 The approaches of enhanced FOM in DMD 21 2.6 Evolution of silver morphology under plasma exposure 23 Chapter 3 Experimental Procedures and characterization equipments 25 3.1 Sputtering deposition process 25 3.2 Electron beam physical vapor deposition process 26 3.3 Surface profiler 27 3.4 X-ray diffraction 27 3.5 Transmission electron microscopy 29 3.6 Scanning electron microscopy 29 3.7Atomic force microscopy 30 3.8 X-ray photo-electron spectroscopy 31 3.9 Four point probe and Hall effect 31 3.10. Ellipsometer 32 3.11. UV/Vis/NIR spectrometer 33 Chapter 4Tailoring transparence in MoOx/Ag/MoOx electrode through Ag by O2/Ar plasma exposure 34 4.1 Motivation of MoOx/Ag/MoOx electrode 34 4.2 Preparation of MoOx/Ag/MoOx through sputtering 35 4.3 Structural and optical properties of MoOx films fabricated by reactive sputtering 37 4.4 Structural, electrical and optical properties of AM and MAM stacked layer with O2/Ar plasma treatments 37 4.5 Microstructures, optical, and electrical properties of AM and MAM stacked layer with different Ag thickness 40 4.6 Optical, and electrical properties of symmetric and asymmetric MAM multilayers with different MoOx thickness in configuration 42 4.7 Summary of MoOx/Ag composites through Ag by O2/Ar plasma exposure 43 Chapter 5 High transparent ITO/Ag/ITO electrode with Ag layer under O2/Ar plasma exposure 44 5.1 Motivation of ITO/Ag/ITO 44 5.2. Experimental 45 5.3. Results and Discussion 47 5.3.1 Structure and optical properties of ITO films fabricated by reactive sputtering with different O2/Ar ratio 47 5.3.2 Structure, electrical and optical properties of AI stacked layer prepared with Ag under O2/Ar plasma exposure 47 5.3.3 Structure, optical, and electrical properties of symmetrical IAI stacked layer with different Ag thickness 49 5.3.4 Thermal stability of IAI multi-layers with different annealing temperature 52 5.4. Conclusions 53 Chapter 6 Indium-free transparent TiOx/Ag/WO3 stacked composite electrode with improved moisture resistance 55 6.1 Motivation of TiOx/Ag/WO3 stacking layer 55 6.2. Experimental details of preparation of TiOx/Ag/WO3 by E-gun 56 6.3. Structure properties of TiOx, WO3, and TiOx/Ag/WO3 57 6.4. Optical and electrical properties of TiOx, WO3, and TiOx/Ag/WO3 59 6.5. Damped test of TiOx/Ag/WO3 and WO3/Ag/WO3 61 6.6. Summary of TiO2/Ag/WO3 stacking layer 61 Chapter 7 Conclusions and future prospects 63 7. 1 Conclusions 63 7.2 Future prospects 65 References 66 Figure Captions 81 Table Captions 86 Related Publication 119

    References
    Chapter 1
    [1] K. Badeker, Ann Phys. 22 (1907).
    [2] T.G. Bauer, Ann Phys. 30 (1937) 433.
    [3] G. Rupprecht, Z. Phys. 139 (1954).
    [4] G. Gordillo, L.C. Moreno, W. Delacruz, P. Teteran, Thin Solid Films 252 (1994) 61-66.
    [5] M.A.M. Khan, W. Khan, Journal of Electronic Materials 45 (2016) 4453-4459.
    [6] Z.Z. Ma, Z.R. Li, K. Liu, C.R. Ye, V.J. Sorger, Nanophotonics 4 (2015) 198-213.
    [7] J.L. Vossen, RCA Rev. 32 (1971).
    [8] J.L. Vossen, Phys. Thin Films 9 (1977) 71.
    [9] D.B. Fraser, H.D. Cook, Journal of Electrochem Soc. 119 (1972) 1368-1374.
    [10] G.U. Kulkarni, S. Kiruthika, R. Gupta, K.D.M. Rao, Current Opinion in Chemical Engineering 8 (2015) 60-68.
    [11] K.J. Patel, G.G. Bhatt, J.R. Ray, P. Suryavanshi, C.J. Panchal, Journal of Solid State Electrochemistry 21 (2017) 337-347.
    [12] M. Saifultah, J. Gwak, J.H. Yun, Journal of Materials Chemistry A 4 (2016) 8512-8540.
    [13] K. Zilberberg, T. Riedl, J. Mater. Chem. A, 2016,4, 14481 4 (2016) 14481-14508.
    [14] D. Chen, J.J. Liang, Q.B. Pei, Science China-Chemistry 59 (2016) 659-671.
    [15] W.X. Guo, Z.J. Xu, F.Y. Zhang, S.Y. Xie, H.Y. Xu, X.Y. Liu, Advanced Functional Materials 26 (2016) 8855-8884.
    Chapter 2
    [1] H.Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, H. Morkoc, Superlattices and Microstructures 48 (2010) 458-484.
    [2] J.W. Gao, K. Kempa, M. Giersig, E.M. Akinoglu, B. Han, R.P. Li, Advances in Physics 65 (2016) 553-617.
    [3] Q.W. Tang, J.L. Duan, Y.Y. Duan, B.L. He, L.M. Yu, Electrochimica Acta 178 (2015) 886-899.
    [4] S. Touihri, L. Cattin, D.T. Nguyen, M. Morsli, G. Louarn, A. Bouteville, V. Froger, J.C. Bernede, Applied Surface Science 258 (2012) 2844-2849.
    [5] Q.L. Chen, F. Zabihi, M. Eslamian, Synthetic Metals 222 (2016) 309-317.
    [6] L. Kinner, S. Nau, K. Popovic, S. Sax, I. Burgues-Ceballos, F. Hermerschmidt, A. Lange, C. Boeffel, S.A. Choulis, E.J.W. List-Kratochvil, Applied Physics Letters 110 (2017) 5.
    [7] J.A. Manzi, C.E. Knapp, I.P. Parkin, C.J. Carmalt, Thin Solid Films 616 (2016) 477-481.
    [8] J. Keller, A. Aijaz, F. Gustaysson, T. Kubart, L. Stolt, M. Edoff, T. Torndahl, Solar Energy Materials and Solar Cells 157 (2016) 757-764.
    [9] H.M. Yates, J.M. Gaskell, M.E. Thomson, D.W. Sheel, B. Delaup, M. Morales-Masis, Thin Solid Films 590 (2015) 260-265.
    [10] S. Nicolay, M. Despeisse, F.J. Haug, C. Ballif, Solar Energy Materials and Solar Cells 95 (2011) 1031-1034.
    [11] K. Hertel, J. Hupkes, C. Pflaum, Optics Express 21 (2013) A977-A990.
    [12] D.W. Choi, J.S. Park, Surface & Coatings Technology 259 (2014) 238-243.
    [13] J.Y. Lin, Y.L. Pei, Y. Zhuo, Z.M. Chen, R.Q. Hu, G.S. Cai, G. Wang, Chinese Physics B 25 (2016) 4.
    [14] Z. Szabo, Z. Baji, P. Basa, Z. Czigany, I. Barsony, H.Y. Wang, J. Volk, Applied Surface Science 379 (2016) 304-308.
    [15] G. Qin, L.D. Fan, A. Watanabe, Journal of Materials Processing Technology 227 (2016) 16-23.
    [16] M.H. Luo, Y.H. Liu, W.B. Huang, W. Qiao, Y. Zhou, Y. Ye, L.S. Chen, Micromachines 8 (2017) 16.
    [17] A. Calafat, N. Sanchez, Applied Catalysis a-General 528 (2016) 14-23.
    [18]R.A. Sayer, S.L. Hodson, T.S. Fisher, Journal of Solar Energy Engineering-Transactions of the Asme 132 (2010) 4.
    [19] L.J. Deng, Y.Z. Gu, Y.H. Gao, Z.Y. Ma, G. Fan, Journal of Colloid and Interface Science 494 (2017) 355-362.
    [20] A.S. Alshammari, M. Shkunov, S.R.P. Silva, Physica Status Solidi-Rapid Research Letters 8 (2014) 150-153.
    [21] J. Ning, L. Hao, M.H. Jin, X.Y. Qiu, Y.D. Shen, J.X. Liang, X.H. Zhang, B. Wang, X.L. Li, L.J. Zhi, Advanced Materials 29 (2017) 8.
    [22] J.M. Cho, D.H. Kim, M.S. Yoo, S. Bae, D.S. Kim, Journal of Nanoscience and Nanotechnology 17 (2017) 3304-3309.
    [23] P.C. Mahakul, K. Sa, B. Das, B. Subramaniam, S. Saha, B. Moharana, J. Raiguru, S. Dash, J. Mukherjee, P. Mahanandia, Journal of Materials Science 52 (2017) 5696-5707.
    [24] Y. Han, Y.X. Liu, L. Han, J. Lin, P. Jin, Carbon 115 (2017) 34-42.
    [25] B.H. Wee, T.F. Wu, J.D. Hong, Acs Applied Materials & Interfaces 9 (2017) 4548-4557.
    [26] J.H. Chu, D.H. Lee, J. Jo, S.Y. Kim, J.W. Yoo, S.Y. Kwon, Advanced Functional Materials 26 (2016) 7234-7243.
    [27] S. Azoubel, S. Magdassi, Acs Applied Materials & Interfaces 6 (2014) 9265-9271.
    [28] T.T. Tung, J. Yock, F.K. Alotaibi, M.J. Nine, R. Karunagaran, M. Krebsz, G.T. Nguyen, D.N.H. Tran, J.F. Feller, D. Losic, Acs Applied Materials & Interfaces 8 (2016) 16521-16532.
    [29] A. Anis, A.A. Mohammad, A. Hussain, S.E. Ahmed, Scientific Reports 6 (2016) 7.
    [30] G. Kumar, Y.D. Li, S. Biring, Y.N. Lin, S.W. Liu, C.H. Chang, Organic Electronics 42 (2017) 52-58.
    [31] H. Reddy, U. Guler, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Optical Materials Express 6 (2016) 27.
    [32] W.H. Zhang, J. Xiong, S. Wang, W.E. Liu, J. Li, D.F. Wang, H.S. Gu, X.B. Wang, J.H. Li, Journal of Power Sources 337 (2017) 118-124.
    [33] J. Jang, H.G. Im, J. Jin, J. Lee, J.Y. Lee, B.S. Bae, Acs Applied Materials & Interfaces 8 (2016) 27035-27043.
    [34] H. Oh, M. Lee, Materials Letters 176 (2016) 110-113.
    [35] X. Yang, P.Q. Gao, Z.H. Yang, J.Y. Zhu, F. Huang, J.C. Ye, Scientific Reports 7 (2017) 9.
    [36] M.W. Knight, J. van de Groep, P.C.P. Bronsveld, W.C. Sinke, A. Polman, Nano Energy 30 (2016) 398-406.
    [37] J.H. Yoo, A. Lange, J. Bude, S. Elhadj, Optical Materials Express 7 (2017) 817-826.
    [38] B.S. Kim, J.B. Pyo, J.G. Son, G. Zi, S.S. Lee, J.H. Park, J. Lee, Acs Applied Materials & Interfaces 9 (2017) 10865-10873.
    [39] X.J. Yang, W. He, S.X. Wang, G.Y. Zhou, Y. Tang, Journal of Experimental Nanoscience 9 (2014) 541-550.
    [40] J. Idier, W. Neri, C. Labrugere, I. Ly, P. Poulin, R. Backov, Nanotechnology 27 (2016) 7.
    [41] Y.H. Cheng, S.Y. Cheng, Nanotechnology 15 (2004) 171-175.
    [42] R.L.Z. Hoye, K.P. Musselman, J.L. MacManus-Driscoll, Apl Materials 1 (2013) 11.
    [43] M. Kodu, T. Arroval, T. Avarmaa, R. Jaaniso, I. Kink, S. Leinberg, K. Savi, M. Timusk, Applied Surface Science 320 (2014) 756-763.
    [44] N.M.S. Jahed, M. Mahmoudysepehr, S. Sivoththaman, Materials Research Express 3 (2016) 8.
    [45] M.V. Castro, C.J. Tavares, Thin Solid Films 586 (2015) 13-21.
    [46] J.H. Kim, J.Y. Moon, H. Kim, H.S. Lee, H.K. Cho, J.H. Lee, H.S. Kim, Journal of the Korean Physical Society 55 (2009) 1931-1935.
    [47] M.C. Li, C.C. Kuo, S.H. Peng, S.H. Chen, C.C. Lee, Japanese Journal of Applied Physics 51 (2012) 4.
    [48] J. Werner, J. Geisskihler, A. Dabirian, S. Nicolay, M. Morales-Masis, S. De Wolf, B. Niesen, C. Ballif, Acs Applied Materials & Interfaces 8 (2016) 17260-17267.
    [49] L. Cattin, J.C. Bernede, M. Morsli, Physica Status Solidi a-Applications and Materials Science 210 (2013) 1047-1061.
    [50] G. Haacke, Journal of Applied Physics 47 (1977) 4806-4809.
    [51] C. Guillen, J. Herrero, Optics Communications 282 (2009) 574-578.
    [52] K. Hong, J.H. Son, S. Kim, B.H. Koo, J.L. Lee, Chemical Communications 48 (2012) 10606-10608.
    [53] H.K. Park, J.W. Kang, S.I. Na, D.Y. Kim, H.K. Kim, Solar Energy Materials and Solar Cells 93 (2009) 1994-2002.
    [54] H. Cho, C. Yun, S. Yoo, Optics Express 18 (2010) 3404-3414.
    [55] C. Guillen, J. Herrero, Solar Energy Materials and Solar Cells 92 (2008) 938-941.
    [56] I. Seo, S.O. Ryu, Journal of the Korean Physical Society 66 (2015) 790-793.
    [57] H. Han, N.D. Theodore, T.L. Alford, Journal of Applied Physics 103 (2008) 8.
    [58] D. Slocombe, A. Porch, M. Pepper, P.P. Edwards, Energy & Environmental Science 5 (2012) 5387-5391.
    [59] P.P. Wang, D.Y. Zhang, D.H. Kim, Z.Y. Qiu, L.M. Gao, R. Murakami, X.P. Song, Journal of Applied Physics 106 (2009) 5.
    [60] R. Baetens, B.P. Jelle, A. Gustavsen, Solar Energy Materials and Solar Cells 94 (2010) 87-105.
    [61] C.G. Granqvist, Solar Energy Materials and Solar Cells 91 (2007) 1529-1598.
    [62] Y.S. Oh, H. Lee, D.Y. Choi, S.U. Lee, H. Kim, S. Yoo, I. Park, H.J. Sung, Acs Applied Materials & Interfaces 8 (2016) 10937-10945.
    [63] V. Antad, L. Simonot, D. Babonneau, Nanotechnology 24 (2013) 7.
    [64] Y.C. Fang, J.J. He, K. Zhang, C.Y. Xiao, B. Zhang, J. Shen, H.H. Niu, R. Yan, J.L. Chen, Optics Letters 40 (2015) 5455-5458.
    [65] T.W. Lin, P.S. Chen, Z.Y. Wang, K.W. Zhuang, S.C. Chiu, C.H. Peng, S.W. Lee, Ceramics International 43 (2017) 308-315.
    [66] Z.Y. Zhang, M. Kawamura, Y. Abe, K.H. Kim, Japanese Journal of Applied Physics 52 (2013) 3.
    [67] L.Y. Liu, S.S. Ma, H. Wu, B. Zhu, H.M. Yang, J.J. Tang, X.Y. Zhao, Materials Letters 149 (2015) 43-46.
    [68] Y. Sugimoto, K. Igarashi, S. Shirasaki, A. Kikuchi, Japanese Journal of Applied Physics 55 (2016) 6.
    [69] R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D. Ghosh, V. Pruneri, Nature Communications 7 (2016) 8.
    [70] Y. Abe, T. Nakayama, Mater. Lett. 61 (2007) 3897-3900.
    [71] J.A. Jeong, H.K. Kim, Solar Energy Materials and Solar Cells 93 (2009) 1801-1809.
    [72] D.R. Sahu, J.L. Huang, Microelectronics Journal 38 (2007) 299-303.
    [73] T.L. Yang, Z.S. Zhang, S.M. Song, Y.H. Li, M.S. Lv, Z.C. Wu, S.H. Han, Vacuum 83 (2008) 257-260.
    [74] M. Kudo, Y. Ohno, T. Hiroi, T. Fujimoto, K. Hamada, M. Arita, Y. Takahashi, Ieee, Real-time resistive switching of Cu/MoOx ReRAM observed in transmission electron microscope, 2014 Ieee Silicon Nanoelectronics Workshop, Ieee, New York, 2014.
    [75] W. Wang, M. Song, T.S. Bae, Y.H. Park, Y.C. Kang, S.G. Lee, S.Y. Kim, D.H. Kim, S. Lee, G.H. Min, G.H. Lee, J.W. Kang, J. Yun, Advanced Functional Materials 24 (2014) 1551-1561.
    [76] G. Zhao, W. Wang, T.S. Bae, S.G. Lee, C. Mun, S. Lee, H.S. Yu, G.H. Lee, M. Song, J. Yun, Nature Communications 6 (2015) 8.
    [77] J.C. Bernede, L. Cattin, T. Abachi, Y. Lare, M. Morsli, M. Makha, Materials Letters 112 (2013) 187-189.
    [78] J.H. Kim, D.H. Kim, T.Y. Seong, Ceramics International 41 (2015) 3064-3068.
    [79] N. Meshram, C. Loka, K.R. Park, K.S. Lee, Materials Letters 145 (2015) 120-124.
    [80] H. Kermani, H.R. Fallah, M. Hajimahmoodzadeh, Physica E-Low-Dimensional Systems & Nanostructures 47 (2013) 303-308.
    [81] Y.C. Han, M.S. Lim, J.H. Park, K.C. Choi, Organic Electronics 14 (2013) 3437-3443.
    [82] N. Formica, P. Mantilla-Perez, D.S. Ghosh, D. Janner, T.L. Chen, M.H. Huang, S. Garner, J. Martorell, V. Pruneri, Acs Applied Materials & Interfaces 7 (2015) 4541-4548.
    [83] M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Vacuum 86 (2012) 1318-1322.
    [84] J.H. Kim, Y.J. Moon, S.K. Kim, Y.Z. Yoo, T.Y. Seong, Ceramics International 41 (2015) 14805-14810.
    [85] C.H. Chu, H.W. Wu, J.L. Huang, Ceramics International 42 (2016) 5754-5761.
    [86] Z. Zhao, T.L. Alford, Solar Energy Materials and Solar Cells 157 (2016) 599-603.
    [87] S.K. Medda, M. Mitra, G. De, Journal of Chemical Sciences 120 (2008) 565-572.
    [88] C.X. Ma, M.J. Trujillo, J.P. Camden, Acs Applied Materials & Interfaces 8 (2016) 23978-23984.
    [89] K. Ranganathan, D. Wamwangi, N.J. Coville, Solar Energy 118 (2015) 256-266.
    Chapter 3
    [1] V. Atluri, N. Herbots, D. Dagel, S. Bhagvat, S. Whaley, Nuclear Instruments and Methods in Physics Research B I I8 (1996) 144.
    [2] Yuji Takakuwa, Masafumi Nogawa, Michio Niwano, Hitoshi Katakura, Satoshi Matsuyoshi, Hiroyuki Ishida, Hiroo Kato and Nobuo Miyamoto, Jpn. J. Appl. Phys. 28 (1989) L1274.
    Chapter 4
    [1]. J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, Transition metal oxides for organic electronics: energetics, device physics and applications, Adv Mater. 24 (2012) 5408.
    [2]. E. Wrzesniewski, Transparent oxide/metal/oxide trilayer electrode for use in top-emitting organic light-emitting diodes, Journal of Photonics for Energy (2011) 011023.
    [3]. C. Guillén, J. Herrero, TCO/metal/TCO structures for energy and flexible electronics, Thin Solid Films 520 (2011) 1.
    [4]. M.-H. Park, J.-H. Li, A. Kumar, G. Li, Y. Yang, Doping of the Metal Oxide Nanostructure and its Influence in Organic Electronics, Advanced Functional Materials 19 (2009) 1241.
    [5]. J.B. Kim, S.B. Jin, L. Wen, P. Premphet, K. Leksakul, J.G. Han, Low temperature,high conductivity Al-doped ZnO film fabrication using modified facing target sputtering, Thin Solid Films 587 (2015) 88.
    [6]. M.V. Castro, C.J. Tavares, Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: Substrate temperature, sputtering pressure
    and bias voltage, Thin Solid Films 586 (2015) 13.
    [7]. Q. Huang, Y. Wang, S. Wang, D. Zhang, Y. Zhao, X. Zhang, Transparent conductive ZnO:B films deposited by magnetron sputtering, Thin Solid Films 520 (2012) 5960.
    [8]. Z.Z. Wang, C.F. Zhang, D.Z. Chen, S. Tang, J.C. Zhang, Y. Wang, G.Q. Han, S.R.Xu, Y. Hao, Flexible ITO-Free Organic Solar Cells Based on MoO3/Ag Anodes,IEEE Photonics Journal 7 (2015) 8400109.
    [9]. C. H. Chu, H. W. Wu, J.-L. Huang, Study of Cu-based Al-doped ZnO multilayer thin films with different annealing conditions, Ceram. Int. 42 (2016) 5754.
    [10]. J. H. Kim, Y. J. Moon, S. K. Kim, Y. Z. Yoo, T. Y. Seong, Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,Ceram. Int. 41 (2015) 14805.
    [11]. D. Kim, The structural and optoelectrical properties of TiON/Au/TiON multilayer films, Materials Letters 64 (2010) 668.
    [12]. E. R. Rwenyagila, B. Agyei-Tuffour, K. O. Onogu, O. Akin-Ojo, M. G. Z. Kana, T.L. Alford, W. O. Soboyejo, Computational modeling of optical properties in aluminum nanolayers inserted in ZnO for solar cell electrodes, Optics Letters 40(2015) 3914.
    [13]. H.J. Park, J.H. Park, J.I. Choi, J.Y. Lee, J.H. Chae, D. Kim, Fabrication of transparent conductive films with a sandwich structure composed of ITO/Cu/ITO,Vacuum 83 (2008) 448.
    [14]. W. Yang, Z. Wu, Z. Liu, L. Kong, Deposition of Ni, Ag, and Pt-based Al-doped ZnO double films for the transparent conductive electrodes by RF magnetron sputtering, Applied Surface Science 256 (2010) 7591.
    [15]. J.H. Park, J.H. Chae, D. Kim, Influence of nickel thickness on the properties of ITO/Ni/ITO thin films, Journal of Alloys and Compounds 478 (2009) 330.
    [16]. T.N. Xu, L. Hu, S.Q. Jin, B.P. Zhang, X.K. Cai, H.Z. Wu, C.H. Sui, Photon energy conversion via localized surface plasmons in ZnO/Ag/ZnO nanostructures,Applied Surface Science 258 (2012) 5886.
    [17]. G. Leftheriotis, P. Yianoulis, D. Patrikios, Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications, Thin Solid Films 306 (1997) 8.
    [18]. B. Tian, G. Williams, D. Ban, H. Aziz, Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode, J. Appl. Phys. 110 (2011) 104507.
    [19]. W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W.T. Hammond, J. Xue, Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode,Organic Electronics 13 (2012) 2221.
    [20]. H. W. Choi, N. D. Theodore, T. L. Alford, ZnO–Ag–MoO3 transparent composite electrode for ITO-free, PEDOT: PSS-free bulk-heterojunction organic solar cells,17 Solar Energy Materials & Solar Cells 117 (2013) 446.
    [21]. W. Wang, M. Song, T.-S. Bae, Y.H. Park, Y.-C. Kang, S.-G. Lee, S.-Y. Kim, D.H.Kim, S. Lee, G. Min, G.-H. Lee, J.-W. Kang, J. Yun, Transparent Ultrathin Oxygen-Doped Silver Electrodes for Flexible Organic Solar Cells, Advanced Functional Materials 24 (2014) 1551.
    [22]. Y.C. Han, M.S. Lim, J.H. Park, K.C. Choi, Optical Effect of Surface Morphology of Ag on Multilayer Electrode Applications for OLEDs, IEEE Electron Dev. Lett. 35 (2014) 238.
    [23]. V. Antad, L. Simonot, D. Babonneau, Tuning the surface plasmon resonance of silver nanoclusters by oxygen exposure and low-energy plasma annealing,Nanotechnology 24 (2013) 045606.
    [24]. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, chap. 3, p. 170,Prentice-Hall, Englewood Cliffs, NJ, 2001.
    [25]. A.L. Fernandes Cauduro, Z.E. Fabrim, M. Ahmadpour, P.F.P. Fichtner, S. Hassing,H.-G. Rubahn, M. Madsen, Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering, Applied Physics Letters 106 (2015) 202101.
    [26]. C. Wang, I. Irfan, X. Liu, Y. Gao, Role of molybdenum oxide for organic electronics: Surface analytical studies, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement,and Phenomena 32 (2014) 040801.
    [27]. M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells, Solar Energy Materials and Solar Cells 100 (2012) 153.18
    [28]. S.H. Oh, S.-M. Lee, K.C. Choi, Relationship between surface plasmon and transmittance enhancement in indium–tin-oxide/Ag/indium–tin-oxide multilayer electrodes, Thin Solid Films 520 (2012) 3605.
    [29]. N. Venugopal, A. Mitra, Influence of temperature dependent morphology on localized surface plasmon resonance in ultra-thin silver island films, Applied Surface Science 285 (2013) 357.
    [30]. C.-C. Wu, P.S. Chen, C.-H. Peng, C.-C. Wang, TiOx/Ag/TiOx multilayer for application as a transparent conductive electrode and heat mirror, Journal of Materials Science: Materials in Electronics 24 (2013) 2461.
    [31]. G. Haacke, NEW FIGURE OF MERIT FOR TRANSPARENT CONDUCTORS, J.Appl. Phys. 47 (1976) 4086.
    [32]. L. Cattin, Y. Lare, M. Makha, M. Fleury, F. Chandezon, T. Abachi, M. Morsli, K.Napo, M. Addou, J.C. Bernède, Effect of the Ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3 multilayers, Solar Energy Materials and Solar Cells 117 (2013) 103.
    [33]. S.H. Mohamed, Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/ ZnO multilayer system, Journal of Physics and Chemistry of Solids 69 (2008) 2378.
    Chapter 5
    [1] D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).
    [2] C. G. Granqvist, 91, 1529 (2007).
    [3] M. Bender, W. Seelig, C. Daube, H. Frakenberger, B. Ocker, and J. Stollenwerk, Thin Solid Films 326, 72 (1988).
    [4] G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, Thin Solid Films 515, 8562 ( 2007).
    [5] Shi-Wei Chen, and Chun-Hao Koo, Mater. Lett. 61, 4097 (2007).
    [6] S. Sutthana, N. Hongsith, and S. Choopun, Current Appl. Phys. 10, 813 (2010).
    [7] D. R. Sahu, and J. Huang, Thin Solid Films 516, 208 (2007).
    [8] J. C. C. Fan, F. J. Bachner, G. H. Foley, and P. M. Zavracky, Appl. Phys. Lett. 25 693 (1974).
    [9] Yong-Seok Park, Kwang Hyuk Choi, and Han-Ki Kim, J. Phys. D: Appl. Phys. 42 235109 (2009).
    [10] Jay Lewis, S. Grego, B. Chalamala, E. Vick, and Dorota Temple, Appl. Phys. Lett. 85 3450 (2004).
    [11] Jae Hoon Lee, Kie Young Woo, Kyeong Heon Kim, Hee-Dong Kim, and Tae Geun Kim, Optics Lett. 38 5055 (2013).
    [12] Wei Wang, Myunggkwan Song, Tae-Sung Bae, Yeon Hyun Park, Yong-Cheol Kang, Sang-Geul Lee, Sei-Youg Kim, Dong Ho Kim, Sunghun Lee, Guanghui Min, Gun-Hwan Lee, Jae-Wook Kang, and Jungheum Yun, Adv. Funct. Mater 24 1551 (2014).
    [13] Yun Cheol Han, Myung Sub Lim, Jun Hong Park, and Kyung Cheol Choi, IEEE Electron Dev. Lett. 35, 238 (2014).
    [14] L. Cattin, Y. Lare, M. Makha, M. Fleury, F. Chandezon, T. Abachi, M. Morsli, K. Napo, M. Addou, and J. C. Bernède, Solar Energy Mater. & Solar cells 117, 103 (2013).
    [15] V. Antad, L. Simonot, and D. Babonneau, Nanotechnology 24, 045606 (2013).
    [16] Ocal Tuna, Yusuf Selamet, Gulnur Aygun, Lutfi Ozyuzer, J. Phys. D: Appl. Phys. 43, 055402 (2010).
    [17] J. F. Pierson, and C. Rousselot, Surf. Coat. Technol. 200, 276 (2005).
    [18] G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys. 47 4086 (1976).
    [19] D. R. Lide, CRC Handbook of Chemistry and Physics, 76th ed. (CRC, Boca Raton, FL, 1995).
    [20] Jin A Jeong, and H. K. Kim, Solar Energy Mater. and Solar cells 93 1801(2009).
    [21] D. Zhang, P. Wang, R. Murakami, and X. Song, Appl. Phys. Letts. 96, 233114 (2010).
    [22] C. Guillen, and J. Herrero, Optical Communication 28, 574 (2009).
    [23] A. Indluru, and T. L. Alford, J. Appl. Phys. 105, 123528 (2009).
    [24] Yeon Sik Jung, Yong Won Choi, Ho Chul Lee, and Dong Wook Lee, Thin Solid Films 440, 278 (2003).
    [25] Nagsen Meshram, Chadrasekhar Loka, Kyoung Ryeol Park, and Kee-Sun Lee, Mater. Lett. 145 (2015) 120-124.
    Chapter 6
    [1] C. Guillen, J. Herrero, Thin Solid Films 520, 1(2011).
    [2] L. Cattin, J.C. Bernede, M. Morsli, Phys. Status Solidi A-Appl. Mat. 210, 1047 (2013).
    [3] A. Indluru, T.L. Alford, J. Appl. Phys. 105, 123528 (2009).
    [4] H.L. Li, Y. Lv, X. Zhang, X.Y. Wang, X.Y. Liu, Solar Energy Materials and Solar Cells 136, 86(2015).
    [5] N. Zhang, Y.S. Hu, X.Y. Liu, Appl. Phys. Lett.103, 033301(2013).
    [6] C.C. Wu, P.S. Chen, C.H. Peng, C.C. Wang, J. Mater. Sci. –Mater. in Electronics, 24, 2461(2013).
    [7] K. Jeon, H. Youn, S. Kim, S. Shin, M. Yang, Nanoscale Res. Lett. 7, 253 (2012).
    [8] M. M. Hasan, A. S. M. A. Haseeb, H. H. Majuki, Surf. Eng. 27, 382 (2011).
    [9] C. T. Lee, D. Y.Chiang, P. K. Chiu, N. N. Chu, in Proceedings of 2014 International Symposium on Next-Generation Electronics, DOI: 10.1109/ISNE.2014.6839355.
    [10] D.R. Lide, CRC Handbook of Chemistry and Physics,, CRC, Boca Raton, FL, 76th ed., 1995.
    [11] S. H. Mohamed, J. Phys. Chem. Solids 69, 2378(2008).
    [12] J.T. Guske, J. Brown, A. Welsh, S. Franzen, Opt. Express, 20, 23215(2012).
    [13] X. Fang, C.L. Mak, J.Y. Dai, K. Li, H. Ye, C.W. Leung, ACS Appl. Mater. Interfaces 6, 15743(2014).
    [14] J.A. Jeong, H.K. Kim, Solar Energy Materials and Solar Cells 93, 1801(2009).
    [15] G. Haacke, J. Appl. Phys. 47, 4086(1976).
    [16] J.H. Kim, H.K. Lee, J.Y. Na, S.K. Kim, Y.Z. Yoo, T.Y. Seong, Ceram. Int. 41, 8059(2015).
    [17] W.J. Yu, L. Shen, F.X. Meng, Y.B. Long, S.P. Ruan, W.Y. Chen, Solar Energy Materials and Solar Cells 100, 226 (2012).
    [18] K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H.W. Choi, N.Y. Lee, Y.H. Tak, J.L. Lee, J. Phys. Chem. C115, 3453(2011).
    [19] H. Kermani, H. R. Fallah, H. Hajimahmoodzadeh, Physica E47, 303 (2013).
    [20] Y. C. Han, M. S. Lin, J. H. Park, K. C. Choi, Organic Electronics 14, 3437 (2013).
    [21] N. Formica, P. Mantilla-Perez, D. S. Ghosh, D. Janner, T. L. Chen, M. Huang, S. Garner, J. Martorell, V. Pruneri, ACS Appl. Mater. Interface7, 4541 (2015).
    [22] M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Vacuum 86, 1318 (2012)

    QR CODE
    :::