| 研究生: |
吳瑞庭 WU, JUI-TING |
|---|---|
| 論文名稱: | Improvement of Calcium Cation-Chloride Anion Interaction Lennard-Jones Parameters for Molecular Dynamics Simulations |
| 指導教授: | 蔡惠旭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 離子交互作用力 |
| 外文關鍵詞: | Interaction |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在理論和模擬不同種的實驗方法下,水溶液中離子與離子對的水合結構、水合能、分子動態學是一個長期研究且具吸引力的主題,值得一提的是鈣離子與鎂離子在細胞膜生理功能上扮演極具影響的角色,另一方面在各組研究顯示鈣離子與水的配位的結果是不一致的。早前的古典力場分子模擬研究指出高濃度電解液中會觀察到過多離子簇生成,其原因來自於使用Lorentz-Berthelot combining rule的方法來估算陽離子與陰離子的蘭納-瓊斯作用力,此近似的方法使用在系統預設值來進行分子動態模擬產生陽、陰離子相互作用力是不當的。
此次的研究,我們採用Luo與 Roux所提出的方法來改善鈣離子與氯離子蘭納-瓊斯作用參數,有兩組力場參數需要進行優化,第一組為Roux的鈣離子與氯離子蘭納-瓊斯作用參數(CHARMM預設值,鈣與水形成五角雙錐體)第二組Lim的參數(鈣與水形成四角反稜柱)。基於使用Lim的鈣離子蘭納-瓊斯參數下,來修正鈣離子與氯離子蘭納-瓊斯作用力,我們模擬結果發現Lim參數可以重現在近乎飽和濃度下的滲透壓實驗值且鈣離子與氯離子蘭納-瓊斯作用參數還能重現大範圍濃度滲透壓的結果,但在Roux鈣離子蘭納-瓊斯參數下卻是辦不到的,再者使用我們優化Lim的鈣離子與氯離子蘭納-瓊斯作用力的結果還能支持近期鈣離子與水配位為八的結果,且改善方法容易操作在CHARMM與NAMD的軟體中。
Abstract
Hydrated structure, molecular dynamics, and hydration energies of ions and ion-pairs in aqueous solution have long been an attractive topic under investigated in terms of various experimental, theoretical, and simulation methods. Particularly, calcium ion (Ca2+) and magnesium ion (Mg2+) play significant roles for biochemical functions of cells. Experimental and simulation results regarding the Ca2+H2O coordination number are pretty diverse. Previous studies have shown that the excess ion cluster formation in concentrated electrolyte solutions observed in classical molecular dynamics simulations (MD) is arisen from the improper cation-anion Lennard-Jones (LJ) interacting parameters, approximated by Lorentz-Berthelot combining rule, which are generally default used in MD simulations. In this study, we follow the same methodology proposed by Luo and Roux1 to determine the Ca2+Cl LJ interaction parameter. Two sets of Ca2+ LJ parameters are used for optimization: Roux’s (pentagonal bipyramidal hydrated structure; default used in CHARMM)(see Figure S2) and Lim’s parameters (square antiprism hydrated structure). Based on the Lim’s Ca2+ LJ parameters, the Ca2+Cl LJ interaction parameter is able to be optimized to experimentally-measured osmotic pressure at nearly saturated concentration, whereas Roux’s Ca2+ LJ parameters are not. Using the optimized Ca2+Cl LJ interaction parameter, the osmotic pressures at a wide range of CaCl2 concentration are well reproduced. Furthermore, it gives a concentration-independent Ca2+H2O coordination number of 8, which supports the recent new experimental results. Our results can be simply implemented in CHARMM and NAMD softwares for further biomolecule simulations.
References
1. Luo, Y.; Roux, B., Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions. The Journal of Physical Chemistry Letters 2010, 1 (1), 183-189.
2. Schneggenburger, R.; Neher, E., Presynaptic calcium and control of vesicle fusion. Current Opinion in Neurobiology 2005, 15 (3), 266-74.
3. Robertson, W. G., Chemistry and biochemistry of Calcium. In In Calciuin in Human Biolog, Nordin, B. E.-C., Ed. Springer-Verlag: London, 1998; pp 1-26.
4. Draper, D. E., RNA Folding: Thermodynamic and Molecular Descriptions of the Roles of Ions. Biophysical Journal 2008, 95 (12), 5489-5495.
5. Guzin, K.; Goynumer, G.; Gokdagli, F.; Turkgeldi, E.; Gunduz, G.; Kayabasoglu, F., The effect of magnesium sulfate treatment on blood biochemistry and bleeding time in patients with severe preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine 2010, 23 (5), 399-402.
6. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry 1983, 4 (2), 187-217.
7. Weiner, P. K.; Kollman, P. A., Amber - Assisted Model-Building with Energy Refinement - a General Program for Modeling Molecules and Their Interactions. Journal of Computational Chemistry 1981, 2 (3), 287-303.
8. Scott, W. R. P.; Hünenberger, P. H.; Tironi, I. G.; Mark, A. E.; Billeter, S. R.; Fennen, J.; Torda, A. E.; Huber, T.; Krüger, P.; van Gunsteren, W. F., The GROMOS Biomolecular Simulation Program Package. The Journal of Physical Chemistry A 1999, 103 (19), 3596-3607.
9. Marcus, Y., A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophysical Chemistry 1994, 51, 11-127.
10. Chitra, R.; Smith, P. E., Molecular Association in Solution: A Kirkwood−Buff Analysis of Sodium Chloride, Ammonium Sulfate, Guanidinium Chloride, Urea, and 2,2,2-Trifluoroethanol in Water. The Journal of Physical Chemistry B 2002, 106 (6), 1491-1500.
11. Chen, A. A.; Pappu, R. V., Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. Journal of Physical Chemistry B 2007, 111 (41), 11884-7; Auffinger, P.; Cheatham, T. E.; Vaiana, A. C., Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue? Journal of Chemical Theory and Computation 2007, 3 (5), 1851-9.
12. Yoo, J.; Wilson, J.; Aksimentiev, A., Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields. Biopolymers 2016, 105 (10), 752-63.
13. Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K., NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics 1999, 151 (1), 283-312.
14. Hewish, N. A.; Neilson, G. W.; Enderby, J. E., Environment of Ca2+ ions in aqueous solvent. Nature 1982, 297 (5862), 138-139.
15. Probst, M. M.; Radnai, T.; Heinzinger, J. K.; Bopp, P.; Rode, B. M., Molecular Dynamics and X-ray Investigation of an Aqueous CaCI, Solution. The Journal of Physical Chemistry. 1985, 89, 753-759.
16. Spångberg, D.; Hermansson, K.; Lindqvist-Reis, P.; Jalilehvand, F.; Sandström, M.; Persson, I., Model Extended X-ray Absorption Fine Structure (EXAFS) Spectra from Molecular Dynamics Data for Ca2+ and Al3+ Aqueous Solutions. The Journal of Physical Chemistry B 2000, 104 (45), 10467-10472.
17. Fulton, J. L.; Heald, S. M.; Badyal, Y. S.; Simonson, J., Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution. I: The perspective on local structure from EXAFS and XANES. The Journal of Physical Chemistry A 2003, 107 (23), 4688-4696.
18. Pham, V. T.; Fulton, J. L., Ion-pairing in aqueous CaCl2 and RbBr solutions: simultaneous structural refinement of XAFS and XRD data. Journal of Chemical Physics 2013, 138 (4), 044201.
19. Megyes, T.; Grosz, T.; Radnai, T.; Bako, I.; Palinkas, G., Solvation of calcium ion in polar solvents: An X-ray diffraction and ab initio study. Journal of Physical Chemistry A 2004, 108 (35), 7261-7271.
20. Mundy, M. D. B. a. C. J., Local Aqueous Solvation Structure Around Ca2+ During Ca2+···Cl− Pair
Formation. The Journal of Physical Chemistry B 2016.
21. Saxena, A.; Garcia, A. E., Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations. Journal of Physical Chemistry B 2015, 119 (1), 219-27.
22. Babu, C. S.; Lim, C., Empirical force fields for biologically active divalent metal cations in water. The Journal of Physical Chemistry A 2006, 110 (2), 691-9.
23. Marchand, S.; Roux, B., Molecular dynamics study of calbindin D9k in the apo and singly and doubly calcium-loaded states. Proteins: Structure, Function, and Bioinformatics 1998, 33 (2), 265-284.
24. Saxena, A.; Sept, D., Multisite ion models that improve coordination and free energy calculations in molecular dynamics simulations. Journal of Chemical Theory and Computation 2013, 9 (8), 3538-3542.
25. Dudev, T.; Lim, C., Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins. Chemical Reviews 2003, 103 (3), 773-788.
26. Sakharov, D. V.; Lim, C., Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions. The Journal of Computational Chemistry 2009, 30 (2), 191-202.
27. Robinson, R. A.; Stokes, R. H., Electrolyte solutions. Courier Corporation: 2002.
28. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14 (1), 33-38.
29. Klauda, J. B.; Venable, R. M.; Freites, J. A.; O'Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.; Pastor, R. W., Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. The Journal of Physical Chemistry B 2010, 114 (23), 7830-7843.
30. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. Journal of Chemical Physics 1983, 79 (2), 926-935.
31. Feller, S. E.; Zhang, Y. H.; Pastor, R. W.; Brooks, B. R., Constant-Pressure Molecular-Dynamics Simulation - the Langevin Piston Method. Journal of Chemical Physics 1995, 103 (11), 4613-4621.
32. Steinbach, P. J.; Brooks, B. R., New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. Journal of Computational Chemistry 1994, 15 (7), 667-683.
33. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics 1977, 23 (3), 327-341.
34. Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M., CHARMM: The biomolecular simulation program. Journal of Computational Chemistry 2009, 30 (10), 1545-1614.
35. Beglov, D.; Roux, B., Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. The Journal of Chemical Physics 1994, 100 (12), 9050-9063; Roux, B., Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study. Biophysical Journal 1996, 71 (6), 3177-3185.