| 研究生: |
嚴啟鳴 Chi-ming Yen |
|---|---|
| 論文名稱: |
都市有機廢棄物固態厭氧消化產出甲烷之特性研究 Study on solid-state anaerobic digestion of municipal solid wastes for methane production |
| 指導教授: |
王鯤生
Kuen-sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | TOC/TKN 、迴流量 、溫度 、固態厭氧消化 、甲烷 |
| 外文關鍵詞: | TOC/TKN, blackflow rate, methane, solid-state anaerobic digestion, temperature |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用模擬都市有機固體廢棄物採批次固態厭氧消化產甲烷,以模擬一般廢棄物為基質,下水污泥為植種菌,利用幫浦將淋滲液迴流至消化槽,取代在過去液態厭氧消化研究所需的機械攪拌裝置。原物料含水量於85%以下,符合固態厭氧消化之條件。本研究參考過去液態厭氧消化產甲烷之文獻設計兩個不同因子之實驗:溫度與滲漉量。
在不同的溫度(35℃、55℃)下,顯示消化槽溫度在55℃的兩個不同滲漉量之批次時,有最佳的累積產甲烷量,分別為43.32 L/kg VS與39.42 L/kg VS,且在此溫度條件下所需反應時間最短,分別為28及26天即達到反應終點;其次為35℃,甲烷產量分別為35.65 L/kg VS與38.83 L/kg VS,所需反應時間為52天及56天。在不同滲漉量(0.38 ml/cm2/min與0.76 ml/cm2/min)下對於甲烷產量則無明顯之趨勢,但在反應初期,溫度55℃,滲漉量0.38 ml/cm2/min有氫氣之產生,產氣量為1.91 L/kg VS。在四個不同批次實驗中揮發性脂肪酸與總有機碳被厭氧微生物所利用轉化成甲烷,顯示利用固態厭氧消化處理高固體物含量之有機廢棄物不僅可去除有機物質,亦可產生再生能源甲烷。
This study investigated the feasibility of solid-state anaerobic digestion for methane production, using simulated municipal solid waste as substrate and sewage sludge as inocula. Unlike the conventional wet anaerobic digestion process, mechanical stirring was not adopted in the digesters of this study. Instead, passive-mixing was achieved by pumping and spraying the liquid residues (i.e., leachate) back to the system, thus gradually rinsing the digesting materials. Initial moisture contents of the feedstock were all below 85%, conforming that the system was always initiated as a solid-state digestion.
The effect of temperature on methane production was examined by performing the digestion process at 35℃and 55℃. Results showed that under thermophilic conditions (i.e., 55℃), 43.32 and 39.42 L/kg VS of maximum methane yields were obtained on Day 28 and 26, respectively. In comparison, mesophilic (35℃) processes only resulted in 35.65 and 38.83 L/kg VS of maximum methane yields, and required a longer period of incubation process (52 and 56 days, respectively). No significant differences in methane production were observed between the circulation rate at 0.38 ml/cm2/min and 0.76 ml/cm2/min. However, when the system was conducted at 0.38 ml/cm2/min circulation rate under mesophilic conditions, production of hydrogen (up to 1.91 L/kg VS) appeared at the early stage of incubation.
These results indicated that using this solid-state anaerobic digestion system to treat municipal solid waste not only can help the degradation of organic substances but can also promote the formation of methane.
1. Abouelenien F., Nakashimada Y. and Nishio N., “Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture” , Journal of Bioscience and Bioengineering, vol 107, No. 3, pp. 293-295 (2009).
2. Alatriste-Mondragon F., Samar P., Cox HHJ., Ahring BK. and Iranpour, R., “Anaerobic codigestion of municipal, farm, and industrial organic waste: A survey of recent literature” , Water Environment Research, vol 78, No. 6, pp. 607-636 (2006).
3. Appels L., Baeyens J., Degreve J. and Dewil R.,“Principles and potential of the anaerobic digestion of waste- activated sludge” , Progress in energy and combustion science, vol 34, No. 6, pp. 755-781 (2008).
4. Bary AI., Cogger CG., Sullivan DM. and Myhre EA., “Characterization of fresh yard trimmings for agricultural use. ” , Bioresource Technology, vol 96, No. 13, pp. 1499-1504 (2005).
5. Batstone DJ., Keller J., Newell RB. and Newland M., “ Modelling anaerobic degradation of complex wastewater. I: model development. ” Bioresource Technology, vol 75, No. 1, pp. 67-74 (2000).
6. BEKON http://www.bekon.eu/ (2011).
7. Bouallagui H., Touhami Y., Cheikh RB. and Hamdi M., “Bioreactor performance in anaerobic digestion of fruit and vegetable wastes” , Process Biochemistry, vol 40, No. 3-4, pp. 989-995 (2005).
8. Chen Y., Cheng JJ. and Creamer KS., “Inhibition of anaerobic digestion process: A review. ”, Bioresource Technology, vol 99, No. 10, pp. 4044-4064 (2008).
9. Collet P., Helias A., Lardon L., Ras M., Goy RA. and Steyer JP., “Life-cycle assessment of microalgae culture coupled to biogas production” , Bioresource Technology, vol 102, No. 1, pp. 207-214 (2011).
10. R. Chandra, V.K. Vijay, P.M.V. Subbarao, T.K. Khura., “Production of methane from anaerobic digestion of jatropha and pongamia oil cakes” , Applied Energy, vol 93, pp. 148-159 (2011).
11. Feng CP., Shimada S., Zhang ZY. and Maekawa T, “A pilot plant two- phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage” , Waste Management, vol 28, No. 10, pp. 1827-1834 (2008).
12. Gerardi MH., “The microbiology of anaerobic digesters” , Hoboken N.J. : Wiley-Interscience, New York (2003).
13. Ghanem III., Gu GW. and Zhu JF., “Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation” , Renewable energy, vol 23, No. 3-4, pp. 673-684 (2001).
14. Guendouz J., Buffiere P., Cacho J., Carrere M. and Delgenes JP., “High- solids anaerobic digestión: comparison of three pilot scales” , Water Science and Technology, vol 58, No. 9, pp. 1757-1763 (2008).
15. Habiba L., Hassib B. and Moktar H., “Improvement of activated sludge stabilization and filterability during anaerobic digestion by fruit and vegetable waste addition.” , Bioresource Technology, vol 100, No. 4, pp. 1555-1560 (2009).
16. Juliastuti SR., Baeyens J., Creemers C., Bixio D. and Lodewyckx E., “The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge.” Journal of Hazardous Materials, vol 100, No. 1-3, pp. 271-283 (2003)
17. Kaparaju P. and Rintala J, “Anaerobic co- digestion of potato tuber and its industrial by- products with pig manure” , Resources Conservation and Recycling, vol 43, No. 2, pp. 175-188 (2005).
18. Larsen HE., Munch B. and Schlundt J., “Use of indicators for monitoring the reduction of pathogen in animal waste treated in biogas plants” , Zentralblatt Fur Hygiene Und Umweltmedizin, vol 195, No. 5-6, pp. 544-555 (1994).
19. Li YB., Park SY. and Zhu JY., “Solid-state anaerobic digestion for methane production from organic waste”, Renewable and Sustainable Energy Reviews, vol 15, No. 1, pp. 821-826 (2011).
20. Liew LN., Shi J. and Li YB., “Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment” , Bioresource Technology, vol 102, No. 19, pp. 8828-8834 (2011).
21. Lin CY., Wu CC. and Hung CH., “Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures” , International Journal of Hydrogen Energy, vol 33, No. 1, pp. 43-50(2008).
22. Macias-Corral M., Samani Z., Hanson A., Smith G., Funk P., Yu H. and Longworth J., “Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure.”, Bioresource Technology, vol 99, No. 17, pp. 8288-8293 (2008).
23. Madigan M. T., Martinko J. M., Dunlap P. V., Clark D. P.,“Brock biology of microorganisms.”, Benjamin Cummings, San Francisco (2009).
24. Martin DJ., Potts LGA, and Heslop VA, “Reaction mechanisms in solid-state anaerobic digestion - I. The reaction fronthypothesis” ,Process Safety and Environmental Protection, vol 81, No. B3, pp. 171-179 (2003).
25. Masse DI. And Droste RL., “Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor” , Water Research, vol 34, No. 12, pp. 3087-3106 (2000).
26. Mechichi T. and Sayadi S., “Evaluating process imbalance of anaerobic digestion of olive mill wastewaters.”, Process Biochemistry, vol 40, No. 1, pp. 139-145 (2005).
27. Mshandete A., Kivaisi A., Rubindamayugi, M. and Mattiasson, B, “Anaerobic batch co- digestion of sisal pulp and fish wastes” , Bioresource Technology, vol 95, No. 1, pp. 19-24 (2004).
28. Qu X., Vavilin VA., Mazeas L., Lemunier M., Duquennoi C., He PJ. And Bouchez T,“Anaerobic biodegradation of cellulosic material : Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis”, Waste Management, vol 29, No. 6, pp. 1828-1837 (2009).
29. Rittmann, B. E., and McCarty P. L., “Environmental biotechnology: Principles and applications”,McGraw-Hill international editions, New York, (2000).
30. Rao MS., Singh SP., Singh AK. and Sodha MS., “Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. ” , Applied Energy, vol 66, No. 1, pp. 75-87 (2000).
31. Romano RT. and Zhang RH., “Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor.”, Bioresource Technology, vol 99, No. 3, pp. 631-637 (2006).
32. Silvestre G., Rodriguez-Abalde A., Fernandez B., Flotats X, and Bonmati A, “Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. ”, Bioresource Technology, vol 102, No. 13, pp. 6830-6836 (2011).
33. Stroot PG., McMahon KD., Mackie RI. and Raskin L.,“Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions- I. Digester performance. ”, Water Research, vol 35, No. 7, pp. 1804-1816 (2001).
34. Sung S. and Liu T., “ Ammonia inhibition on thermophilic anaerobic digestion.” , Chemosphere, vol 53, No. 1, pp. 43-52 (2003).
35. Ueno Y., Tatara M., Fukui H., Makiuchi T., Goto M. and Sode K., “Production of hydrogen and methane from organic solid wastes by phase- separation of anaer process” , Bioresource Technology, vol 98, No. 9, pp. 1861-1865 (2007).
36. Xie BF., Cheng J., Zhou JH., Song WL., Liu JZ. and Cen KF., “Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation”, Bioresource Technology, vol 99, No. 13, pp. 5942–5946 (2008).
37. Yen HW. and Brune DE., “Anaerobic co-digestion of algal sludge and waste paper to produce methane”, Bioresource Technology, vol 98, No. 1, pp. 130-134 (2007).
38. Zhang T., Liu H. and Fang HHP., “Biohydrogen production from starch in wastewater under thermophilic condition” , Journal of Environmental Management, vol 69, No. 2, pp. 149 – 156 (2003).
39. 王盈琪,郭文健,“結合產氫產甲烷之高溫厭氧發酵程序之開發”,2011年廢棄物處理技術研討會 (2011)。
40. 台北市政府工務局衛生下水道工程處 http://www.sso.taipei.gov.tw/
41. 行政院環保署 http://www.epa.gov.tw/
42. 李季眉,張怡塘,林瑩峰,章裕民,方鴻源,邱應志,袁又罡,“環境微生物”,中華民國環境工程學會,新北市 (1999)。
43. 林健三,“環境工程概論”,鼎茂圖書出版股份有限公司,台北市 (2007)
44. 張祖恩,“一般及事業廢棄物最終處置技術”,行政院環境保護署環境保護人員訓練所,中壢市 (2000)。
45. 陳玫佐,“生質沼氣發酵特性之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
46. 陳瑞仁,“有機性廢水處理”,行政院環境保護署環境保護人員訓練所,中壢市 (2008)。
47. 黃昱翔,“有機廢棄物高溫固態厭氧醱酵產氫特性之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
48. 經濟部能源局 http://www.moeaboe.gov.tw/
49. 駱尚廉,楊萬發,“環境工程(二)下水道工程”,曉園出版社公司,台北市 (2006)。
50. 歐陽嶠暉,“下水道工程學”,長松文化,台北市 (2007)。
51. 劉錡樺,“水處理污泥轉換活性碳-沸石複合複合吸附材料之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。