跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳東昇
Dong-Sheng Wu
論文名稱: 電場誘導聚(4-乙烯吡啶)改質雙馬來醯亞胺複合薄膜於鹼性直接乙醇燃料電池之應用
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 182
中文關鍵詞: 鹼性直接乙醇燃料電池改質雙馬來醯亞胺聚合物聚(4-乙烯吡啶)
外文關鍵詞: alkaline direct ethanol fuel cell, modified bismaleimide, poly(4-vinylpyridine)
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鹼性燃料電池的發展受到各界矚目,因其使用非白金觸媒,而能降低出售價格。良好的鹼性燃料電池薄膜需要高離子傳導率及低燃料竄透,但要同時兼具兩者成為鹼性燃料電池作為商業材料的阻礙之一。
    本研究將高分岐結構的改質雙馬來醯亞胺聚合物(mBMI)與聚(4-乙烯吡啶) (P4VP)透過氫鍵作用力與酸鹼作用力而形成semi-IPN (半互穿網路)結構。透過mBMI帶有鹼基的官能基將水分子與氫氧根離子保留於複合薄膜中,以協助離子傳導,因此隨著mBMI添加含量增加,離子傳導度隨之上升;此外,因高分歧結構的mBMI與P4VP形成緻密結構,使複合薄膜在吸附高含量的水分的期間保有極佳的尺寸穩定性。另外,semi-IPN結構也能有效阻絕燃料竄透,因而提高電池整體的效能。
    為進一步改善複合薄膜之物性,本研究以外加電場極化方式成膜,使薄膜內電負度較大的原子(如:N、O等)或具有共振性質的結構(如:苯環等)暴露於外以增加親水性,同時形成有序的親水傳導通道使非結晶區變得更加緻密。相較於無電場極化下的複合薄膜,外加電場誘導的複合薄膜展現較優越的離子傳導率(1.33×10-2~1.85×10-2 S/cm)以及低乙醇竄透率(6.15×10-8~4.02×10-8 cm2/s),同時也有效提高薄膜選擇率。
    本研究顯示以外加電場誘導方式製備複合薄膜,不僅能提升離子傳導度、降低燃料竄透率等特性之外,在物性的方面也有增長,像是提高複合薄膜的化學穩定性、熱穩定性以及機械強度等,在最後的ADEFC單電池測試中,其電流密度為 112 mA/cm2時,具有最大功率密度為 13.66 mW/cm2,顯示此類型複合薄膜可應用於鹼性直接乙醇燃料電池中。


    Being able to use non-platinum based catalyst which promises substantial fuel cell cost reduction, alkaline fuel cell received growing interests especially in the development of key fuel cell materials. Previous attempts to develop alkaline ionic exchange membrane encounter the dilemma that factors to enhance one of the cardinal properties: conductivity, low ethanol permeability, and mechanical/chemical stability are usually achieved at the expanse of the rest. This situation constitutes the major hindrance to rapid commercialization of alkaline fuel cell.
    In this study, we report a novel approach in preparing fuel cell membrane based on the composite system of poly(4-vinylpyridine) (P4VP) polymer reinforced by bismaleimide (mBMI) hyper-branch oligomer. P4VP and mBMI form miscible blends through intermolecular hydrogen bonding between –NH (mBMI) and –N (P4VP). This composite shows high ionic conductivity because the hyper-branched oligomer served both to institute mechanical/chemical stability, but the specific functional groups also promotes OH- transport and repels alcohol due to its huge solubility parameters difference from that of alcohol. As a result, the composite membrane exhibited simultaneous increase of both the ionic conductivity; a pronounced reduction of alcohol permeability and enhanced membrane strength.
    Most interestingly, preparing membrane under externally applied electric field (E-F poling) initiated changes in the membrane morphology that leads to further improvement of these physical properties. The physical, chemical and electronic properties of the two series of P4VP / mBMI membranes with and without electric field-induced composite membranes are compared through Alkaline stability, Fenton test, TGA and XRD analyses. The results confirmed membrane prepared under applying external electric field displayed high ionic conductivity; low fuel permeation; high mechanical strength and high chemical stability.
    After E-F poling, the composite membrane displays ionic conductivity of (1.33×10-2 ~ 1.85×10-2 S/cm) and low ethanol permeation (6.15×10-8 ~ 4.02×10-8 cm2/s); yielding record high ethanol selectivity ratio ( > 4.60×105 S s cm-3). The maximum power density reach up to 13.66 mW/cm2 with a current density at 112 mA/cm2. This improvement is attributed first to the entangled P4VP with mBMI chain and the realignment of the twisted helical segment under external electric field which induced more ordered ion conducting channel, tougher membrane strength and dense polymer chain packing. As results of these structure attributes, fuel cell membrane bearing high ion conductivity; low fuel permeation; high membrane strength; and high chemical stability can be established, simultaneously.

    目錄 摘要 i ABSTRACT iii 致謝辭 v 目錄 vi 圖目錄 xi 表目錄 xix 第一章 緒論 1 1-1前言 1 1-2 燃料電池簡介以及原理 2 第二章 文獻回顧 9 2-1鹼性燃料電池介紹 9 2-1-2 鹼性直接乙醇燃料電池 11 2-2 鹼性燃料電池離子交換薄膜種類及介紹 15 2-2-1 離子交換薄膜之傳遞機制 17 2-2-2 陰離子交換薄膜 23 2-2-3 鹼摻雜高分子薄膜 30 2-2-4 有機-無機複合高分子薄膜 34 2-3聚(4-乙烯吡啶) (P4VP)/改質雙馬來醯亞胺(mBMI)複合薄膜 41 2-4電場誘導高分子與奈米無機物的性質與探討 50 2-4-1 電場裝置的設計與應用原理 50 2-4-2 外加電場誘導奈米無機物與高分子之性質探討 52 2-4-3 外加電場與離子交換薄膜之應用 57 2-5 研究動機 67 第三章 實驗方法與原理 70 3-1 實驗藥品 70 3-2 實驗步驟 71 3-2-1 高分岐鏈鍵結雙馬來醯亞胺(mBMI)合成步驟 71 3-2-2 交聯型固態高分子電解質薄膜之製備 72 3-2-3 電場誘導複合薄膜之製備 72 3-3 實驗儀器 73 3-4實驗儀器及技術原理 74 3-4-1 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 74 3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 74 3-4-3 示差掃描熱卡計 (Differential Scanning Calorimeter, DSC) 75 3-4-4 熱重分析儀(Thermal Gravimetric Analysis, TGA) 76 3-4-5 X 光散射光譜儀(X-Ray Diffraction, XRD) 77 3-4-6 不同分岐長度的mBMI之黏度測試 78 3-4-7薄膜吸水量(Water Uptake)及膨潤率(Swelling Ratio) 81 3-4-8離子交換容量(Ion Exchange Capacity, IEC) 82 3-4-9 複合薄膜機械強度測試 83 3-4-10 化學穩定性(Chemical Stability) 84 3-4-11乙醇竄透率(Ethanol Permeability) 85 3-4-12 離子傳導度(Ionic Conductivity) 87 3-4-13 ADEFC 單電池效能測試 89 3-5 樣品命名規則 91 第四章 結果與討論 92 4-1添加不同分岐長度的改質雙馬來醯亞胺高分子(mBMI)複合薄膜之性質探討 94 4-1-1 NMR 聚合程度分析 94 4-1-2 不同分岐長度的mBMI黏度之比較 97 4-1-3不同分岐長度的mBMI複合薄膜之SEM薄膜微結構 98 4-1-4不同分岐長度的mBMI複合薄膜之DSC保水性質 100 4-1-5不同分岐長度的mBMI複合薄膜之熱穩定性測試 101 4-1-6不同分岐長度的mBMI複合薄膜之吸水性、膨潤率以及IEC值比較 103 4-1-7 不同分岐長度的mBMI複合薄膜之離子傳導度以及乙醇竄透率比較 105 4-1-8 不同分岐長度的mBMI複合薄膜之薄膜選擇率 107 4-2 取較佳分岐長度的雙馬來亞醯胺(mBMI),以添加不同含量對複合薄膜的性質探討 108 4-2-1 相同分岐長度的mBMI複合薄膜之DSC保水性質 109 4-2-2相同分岐長度的mBMI複合薄膜之熱穩定性測試 110 4-2-3相同分岐長度的mBMI複合薄膜之機械強度測試 111 4-2-4 相同分岐長度的mBMI複合薄膜之吸水性、膨潤率以及IEC值比較 112 4-2-5 相同分岐長度的mBMI複合薄膜之離子傳導度以及乙醇竄透率比較 114 4-2-6 相同分岐長度的mBMI複合薄膜之薄膜選擇率 115 4-3外加電場誘導複合薄膜性質探討及性質分析 117 4-3-1 SEM 薄膜微結構影像 118 4-3-2 XRD 薄膜結晶度分析 120 4-3-3 DSC 薄膜保水性質分析 121 4-3-4 TGA 熱穩定性測試 122 4-3-5機械強度測試 123 4-3-6吸水性、膨潤率以及IEC值比較 124 4-3-7離子傳導度以及乙醇竄透率比較 126 4-3-8薄膜選擇率 128 4-3-9化學穩定性測試 130 4-3-10 ADEFC 單電池測試 132 第五章 結論與未來展望 134 5-1 結論 134 5-2 未來展望與研究建議 137 參考文獻 140 圖目錄 圖1-1 燃料電池示意圖 3 圖1-2 燃料電池元件示意圖 3 圖1-3 鹼性燃料電池工作原理示意圖 6 圖1-4 (a)於2000~2007年間所發表與AEMFC相關的研究文章之數量,以及(b)根據發表文獻的原籍國家之分布圖 7 圖1-5 Nissan乙醇生物燃料電池 8 圖2-1 DEFC的基本示意圖:(a) PEM-DEFCs、(b) ADEFCs 13 圖2-2 影響質子傳遞的三個主要協同作用因素 18 圖2-3 氫氧根離子於陰離子交換薄膜之傳遞機制示意圖 20 圖2-4 水和氫氧根離子於水溶液中的傳遞機制示意圖 20 圖2-5 陽離子交換薄膜之化學結構簡式圖 22 圖2-6 氫氧根離子於陽離子交換薄膜之傳遞模擬示意圖 22 圖2-7 QPPO AEMs. (a) PPO-7Q (b) PPO-1Q 24 圖2-8 MDPA-Based Alkaline Anion-Exchange Membrane 25 圖2-9 Alkaline Anion-Exchange Membranes Based on N-cyclic QAs (a) PS-ASU ; (b) PS-DMP ; (c) PPO-ASU; (d) PPO-DMP. 26 圖2-10 Im-PEEK (FDx) Alkaline Anion-Exchange Membrane. 27 圖2-11 PAEK-Based Anion-Exchange Membranes. (A) PAEK-QA:(a) PAEK-TMA、(b) PAEK-TEA、(c) PAEK-TPA;(B) PAEK- PYR;(C) PAEK-API. 28 圖2-12 鹼摻雜PBI薄膜之單元結構 30 圖2-13 鹼摻雜PVA薄膜離子導電度 (a)與KOH鹼液濃度關係變化圖 31 (b) 與不同KOH鹼液濃度以及溫度的變化關係圖 31 圖2-14 鹼摻雜ABPBI薄膜之單元結構 32 圖2-15 鹼摻雜PVA/PBI複合薄膜 33 圖2-16 鹼摻雜PVA/PBI複合薄膜於90℃的ADEFC單電池測試圖 33 圖2-17 Mesoporous silica添加於Cardo poly(aryl ether sulfone ketone)以製備兩性離子聚合物薄膜之示意圖 35 圖2-18 P1與P2複合薄膜浸泡於60℃的1 M NaOH(aq) 時間與氫氧根離子導電度之關係圖 35 圖2-19 QPPO-QPOSS-X 複合薄膜. (a) QPPO (b) QPOSS 37 圖2-20 QPPO-QPOSS-X複合薄膜浸泡於80℃的1 M KOH(aq) 時間與氫氧根離子導電度之關係圖 37 圖2-21 利用Ozone-mediated method製備PVA/m-CNT 38 圖2-22 Layered double hydroxide (LDE)之結構示意圖 39 圖2-23 QA-LDH/TC-QAPPO複合薄膜 (a)多孔洞三明治結構示意圖;(b) 浸泡於80℃的1 M KOH(aq) 時間與氫氧根離子導電度之關係圖 40 圖2-24 聚(4-乙烯吡啶) (Poly(4-vinylpyridine), P4VP)製備示意圖 41 圖2-25 Nafion 117與P4VP透過氫鍵作用力而形成酸鹼複合物 43 圖2-26 Nafion 117薄膜表面生成酸鹼複合結構之SEM圖(a) 浸泡Nafion溶液前 (b) 浸泡Nafion溶液後 43 圖2-27 Pyridinium於鹼性環境下反應之機制 45 圖2-28 PHVB-Based Alkaline Anion-Exchange Membranes (a) PHVB之製備方法 (b)製備帶有氫氧根離子的PHVB 46 圖2-29 PHVB薄膜 (a) 氫氧根離子傳導度 (b) 鹼穩定性 47 圖2-30 membrane 1# 於60℃的AFC單電池測試圖 47 圖2-31 sPEEK/mBMI 複合薄膜示意圖 48 圖2-32 sPEEK/mBMI:(a)甲醇竄透率 (b) 60℃的DMFCs單電池測試 49 圖2-33 在60℃和90℃下的ADEFCs單電池測試 49 圖2-34 液晶之光電效應 51 圖2-35 液晶顯示器構造圖 51 圖2-36 外加電場DC (左)、AC(右)誘導MWCNT於Epoxy之TEM 53 圖2-37 MWCNT施加電場誘導時間與導電度的關係圖 53 圖2-38 奈米層狀石墨板經由電場誘導後之光學影像圖與示意圖 54 圖2-39 PVDF三種鏈構形示意圖:α、β與γ相 55 圖2-40不同溫度下,PVDF受電場誘導後所對應電流值之關係圖 56 圖2-41 PVDF受電場誘導的時間以及所對應的電流值變化圖 56 圖2-42 Nafion薄膜質子傳遞路線圖:(a)未施加電場 (b)施加電場後 57 圖2-43 SEBS於Nafion懸浮液受電場誘導之影像 (a)施加電場前的Side-view. (b) 施加電場後的Side-view. (c) 施加電場前的Top-view. (d) 施加電場前的Top-view. 58 圖2-44 Nafion/SEBS薄膜經電場誘導之質子傳導度、薄膜膨潤性、甲醇竄透率以及薄膜選擇率 59 圖2-45 SPEEK/PDMS薄膜之光學顯微鏡影像圖(a)未施加電場誘導 (b) DC電場誘導 (c) AC電場誘導 60 圖2-46 SPEEK/PDMS薄膜質子傳導度與電場頻率強度之關係圖 60 圖2-47 SPEEK/TiO2複合薄膜之SEM截面影像 61 圖2-48 SPEEK/TiO2複合薄膜質子傳導度與電場頻率強度之關係圖 62 圖2-49 LHD受電場誘導而產生方向性的排列之示意圖 62 圖2-50 TEM圖 (A) LDH. (B) M1 (QPMPPBr membrane). (C) M2 (QPMPPBr/LDH composite membrane). (D) M3 (Electric-field induced QPMPPBr/LDH composite membrane) 63 圖2-51 QPMPPBr複合薄膜離子傳導度與溫度變化關係圖 63 圖2-52 aligned-ASU-LDH/TC-PPO之SEM圖 64 圖2-53 aligned-ASU-LDH/TC-PPO複合薄膜 (a) 離子導電度對溫度之關係圖 (b) 於80℃的1 M KOH(aq)測量離子導電度與時間的關係圖 65 圖2-54電場誘導PVA/ mBMI複合薄膜之乙醇竄透測試與離子導電度分析 66 圖2-55 電場誘導PVA/ mBMI複合薄膜於60℃下的ADEFCs單電池效能 66 圖2-56 (a) P4VP/mBMI 結構示意圖 (b) P4VP與mBMI纏繞示意圖 69 圖3-1 mBMI之合成示意圖 71 圖3-2 外加電場裝置及薄膜內部誘導排列示意圖 73 圖3-3 布拉格定律(Bragg’s Law) 77 圖3-4 奧士瓦黏度計(Ostwald Viscometer) 80 圖3-5 比濃黏度(ηrrd)、固有黏度(ηinh)與濃度之關係圖 80 圖3-6 薄膜應力-應變曲線圖 84 圖3-7 乙醇竄透裝置示意圖 86 圖3-8溫度與濕度控制模組 88 圖3-9 電池組裝之零件與組裝次序 90 圖3-10 鹼性直接乙醇燃料電池測試平台 90 圖4-1 研究流程圖 93 圖4-2 (a) BMI:BTA = 3:1 (b) BMI:BTA = 5:1 (c) BMI:BTA = 7:1於130℃下不同聚合時間的顏色變化 95 圖4-3 BMI之氫訊號 96 圖4-4 mBMI於130℃下不同聚合時間的1H-NMR圖 (a) BMI:BTA = 3:1 (b) BMI:BTA = 5:1 (c) BMI:BTA = 7:1 96 圖4-5 不同分岐長度的mBMI之比濃黏度(固有濃度)與濃度關係圖 (a) 3:1 mBMI;(b) 5:1 mBMI;(c) 7:1 mBMI 97 圖4-6不同分岐長度的mBMI複合薄膜之SEM影像圖 (a) (3:1) Pm15;(b) (5:1) Pm15;(b) (7:1) Pm15 99 圖4-7 不同分岐長度的mBMI複合薄膜之DSC保水性測試圖 101 圖4-8 不同分岐長度的mBMI複合薄膜之TGA分析圖 102 圖4-9 不同分岐長度的mBMI複合薄膜之吸水性、膨潤率與IEC值比較 104 圖4-10 不同分岐長度的mBMI複合薄膜之離子傳導度與乙醇竄透率比較 106 圖4-11 不同分岐長度的mBMI複合薄膜之選擇率比較 107 圖4-12 相同分岐長度的mBMI複合薄膜之DSC保水性測試比較 109 圖4-13 相同分岐長度的mBMI複合薄膜之TGA分析圖 110 圖4-14 相同分岐長度的mBMI複合薄膜之機械強度拉伸測試圖 111 圖4-15 相同分岐長度的mBMI複合薄膜之吸水性、膨潤率與IEC值比較 113 圖4-16 相同分岐長度的mBMI複合薄膜之離子傳導度與乙醇竄透率比較 114 圖4-17 相同分岐長度的mBMI複合薄膜之選擇率比較 116 圖4-18 電場誘導高分子示意圖及裝置圖 117 圖4-19 複合薄膜之SEM影像圖 (a) Pm10;(b) ePm10;(c) Pm15;(d) ePm15;(e) Pm20;(f) ePm20 119 圖4-20 複合薄膜之XRD圖譜 120 圖4-21 複合薄膜之DSC保水性測試圖 121 圖4-22 複合薄膜之TGA分析圖 122 圖4-23 複合薄膜之機械強度拉伸測試圖 123 圖4-24 複合薄膜之吸水性、膨潤率與IEC值比較 125 圖4-25 複合薄膜之離子傳導度與乙醇竄透率比較 126 圖4-26 複合薄膜於30 RH%下的變溫離子傳導度測試 128 圖4-27 複合薄膜之選擇率比較 129 圖4-28 複合薄膜浸泡於60℃的5 M KOH(aq) 時間與重量變化之關係圖 131 圖4-29 複合薄膜浸泡於60℃的Fenton試劑與重量變化之關係圖 131 圖4-30複合薄膜於60℃下的ADEFC單電池測試效能表現 133 表目錄 表2-1 PEAK-Based Alkaline-AEMs之薄膜性質 29 表2-2 鹼摻雜PBI薄膜於ADMFCs以及ADEFCs的電性表現 31 表2-3 Nafion 117薄膜浸泡於不同濃度P4VP溶液後的離子傳導度 44 表2-4 Nafion 117薄膜浸泡於不同濃度P4VP溶液後的甲醇竄透率 44 表3-1不同岐長mBMI添加於P4VP的複合薄膜之命名 91 表3-2 P4VP/(5:1) mBMI複合薄膜之命名規則 91 表4-1 不同分岐長度的mBMI之黏度比較 98 表4-2 不同分岐長度的mBMI複合薄膜之吸水性、膨潤率與IEC值數據 104 表4-3 不同分岐長度的mBMI複合薄膜之離子傳導度與乙醇竄透率數據 106 表4-4 不同分岐長度的mBMI複合薄膜之選擇率數據 108 表4-5 相同分岐長度的mBMI複合薄膜之應力及應變大小之對照表 112 表4-6 相同分岐長度的mBMI複合薄膜之吸水性、膨潤率與IEC值數據 113 表4-7 相同分岐長度的mBMI複合薄膜之離子傳導度與乙醇竄透率數據 115 表4-9 複合薄膜之應力及應變大小之對照表 124 表4-10 複合薄膜之吸水性、膨潤率與IEC值比較 125 表4-11 複合薄膜之離子傳導度與乙醇竄透率比較 127 表4-12 複合薄膜之選擇率數據 129 表4-13 複合薄膜於60℃下的ADEFC單電池測試效能數據 133

    [1] https://en.wikipedia.org/wiki/Proton-exchange_membrane_fuel_cell
    [2] http://www.ele.energy.dtu.dk/Research/Fuel-cells
    [3] L. An, and R. Chen, “Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production,” J. Power Sources, vol. 329, pp. 484–501, 2016.
    [4] H. Vaghari, H. Jafarizadeh-Malmiri, A. Berenjian and N. Anarjan, “Recent advances in application of chitosan in fuel cells,” Sustain. Chem. Process., vol. 1, pp. 16, 2013.
    [5] D.R. Dekel, “Review of cell performance in anion exchange membrane fuel cells," J. Power Sources, vol. 375, pp. 158–169, 2018.
    [6] https://panx.asia/archives/51225
    [7] 黃鎮江,燃料電池(修訂版),全華科技圖書股份有限公司,台北市,民國104年。
    [8] V. Vijayakumar, T.Y. Son, and S.Y. Nam, “Recent advances in composite polymer electrolyte membranes for fuel cell,” Appl. Chem. Eng., vol. 30, pp. 1–10, 2019.
    [9] S. Lu, J. Pan, A. Huang, L. Zhuang, and J. Lu, “Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts,” PNAS, vol. 105, pp. 20611–20614, 2008.
    [10] G. Merle, M. Wessling, and K. Nijmeijer, “Anion exchange membranes for alkaline fuel cells: A review,” J. Membr. Sci., vol. 377, pp. 1–35, 2011.
    [11] P. Gouérec, L. Poletto, J. Denizot, E. Sanchez-Cortezon, and J.H. Miners, “The evolution of the performance of alkaline fuel cells with circulating electrolyte,” J. Power Sources, vol. 129, pp. 193–204, 2004.
    [12] E. Gülzow, and M. Schulze, “Long-term operation of AFC electrodes with CO2 containing gases,” J. Power Sources, vol. 127, pp. 243–251, 2004.
    [13] N.J. Robertson, H.A. Kostalik, T.J. Clark, P.F. Mutolo, H.D. Abruna, G.W. Coates, H.D. Abrunna, and G.W. Coates, “Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications,” J. Am. Chem. Soc., vol. 132, pp. 3400–3404, 2010.
    [14] M. Cifrain, and K.V. Kordesch, “Advances, aging mechanism and lifetime in AFCs with circulating electrolytes,” J. Power Sources, vol. 127, pp. 234–242, 2004.
    [15] Tantram ADS. Fuel requirements for fuel cell. In: Critchley GN, editor. The future of fuel technology: proceedings of a conference held in by the institute of fuel at the invitation of, and in collaboration with, the Royal Institution of Engineers in the Netherlands, Amsterdam, May 1963, Elsevier; 2014. p. 95–110.
    [16] S. Song, and P. Tsiakaras, “Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs),” Appl. Catal. B, vol. 63, pp. 187–193, 2006.
    [17] Y. Oh, S.K. Kim, D.H. Peck, J.S. Jang, J. Kim, and D.H. Jung, “Improved performance using tungsten carbide/carbon nanofiber based anode catalysts for alkaline direct ethanol fuel cells,” Int. J. Hydrog. Energy, vol. 39, pp. 15907–15912, 2014.
    [18] D.M. Fadzillah, S.K. Kamarudin, M.A. Zainoodin, and M.S. Masdar,” Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview,” Int. J. Hydrog. Energy, vol. 44, pp. 3031–3054, 2019.
    [19] Y. Li, T. Zhao, and Z. Liang, “Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells,” J. Power Sources, vol. 187, pp. 387–392, 2009.
    [20] S. Heysiattalab, and M. Shakeri, “2D analytical model for direct ethanol fuel cell performance prediction,” Smart Grid Renew Energy, vol. 2, pp. 427–433, 2011.
    [21] M.M. Ahmad, S.K. Kamarudin, W.R.W. Daud, and Z. Yaakub, “High power passive DMFC with low catalyst loading for small power generation,” Energy Convers. Manag., vol. 51, pp. 821–825, 2010.
    [22] S.K. Kamarudin, W.R.W. Daud, A.Md. Som, A.W. Mohammad, S. Takriff, and M.S. Masdar,” The conceptual design of PEMFC system via simulation,” Chem. Eng. J., vol. 103, pp. 99–113, 2004.
    [23] P. Ekdharmasuit, A. Therdthianwong, and S. Therdthianwong, “The role of an anode microporous layer in direct ethanol fuel cells at different ethanol concentrations,” Int. J. Hydrog. Energy, vol. 39, pp. 1775–1782, 2014.
    [24] Q. Xu, T. Zhao, W. Yang, and R. Chen, “A flow field enable operating direct methanol fuel cells with highly concentrated methanol,” Int. J. Hydrog. Energy, vol. 36, pp. 830–838, 2011.
    [25] T. Zhao, Y. Li, and S. Shen, “Anion-exchange membrane direct ethanol fuel cells: Status and perspective,” Front. Energy Power Eng. China, vol. 4, pp. 443–458, 2010.
    [26] M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, and W.R.W. Daud, “Review: direct ethanol fuel cells,” Int. J. Hydrog. Energy, vol. 38, pp. 9438–9453, 2013.
    [27] L. An, T.S. Zhao, Chen R, and Q.X. Wu, “A novel direct ethanol fuel cell with high power density,” J. Power Sources, vol. 196, pp. 6219–6222, 2011.
    [28] J.P. Pereira, D.S. Falcão, V.B. Oliveira, and A.M.F.R. Pinto, “Performance of a passive direct ethanol fuel cell,” J. Power Sources, vol. 256, pp. 14–19, 2014.
    [29] S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos, and P. Tsiakaras,” The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs,” Appl. Catal. B, vol. 55, pp. 65–72, 2005.
    [30] S. Beyhan, C. Coutanceau, J.-M. Léger, T.W. Napporn, and F. Kadırgan, “Promising anode candidates for direct ethanol fuel cell: Carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method,” Int. J. Hydrogen Energy, vol. 38, pp. 6830–6841, 2013.
    [31] L. An, T.S. Zhao, “Performance of an alkaline-acid direct ethanol fuel cell,” Int. J. Hydrogen Energy, vol. 36, pp. 9994–9999, 2011.
    [32] Z. Zakaria, S.K. Kamarudin, S.N. Timmiati, “Membranes for direct ethanol fuel cells: An overview,” Appl. Energy, vol. 163, pp. 334–342, 2016.
    [33] Y.S. Li, T.S. Zhao, Z.X. Liang, “Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells,” J. Power Sources, vol. 187, pp. 387–392, 2009.
    [34] S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, “Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts,” PNAS, vol. 105, pp. 2611–20614, 2008.
    [35] E. Antolini, E.R. Gonzalez, “Alkaline direct alcohol fuel cells,” J. Power Sources, vol. 195, pp. 431–3450, 2010.
    [36] J.R. Varcoe, R.C. Slade, “Prospects for alkaline anion-exchange membranes in low temperature fuel cells,” Fuel cells, vol. 5, pp. 187–200, 2008.
    [37] S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, “Direct ethanol fuel cells for transport and stationary applications – A comprehensive review,” Appl. Energy, vol. 145, pp. 80-103, 2015.
    [38] L. An, T.S. Zhao, S. Shen, Q. Wu, R. Chen, “Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output,” J. Power Sources, vol. 196, pp. 186–190, 2011.
    [39] A.M. Zainoodin, S.K. Kamarudin, W.R.W. Daud, “Electrode in direct methanol fuel cell,” Int. J. Hydrogen Energy, vol. 35, pp. 4606–4621, 2010.
    [40] G. Andreadisa, V. Stergiopoulos, S. Song, P. Tsiakaras, “Direct ethanol fuel cells: the effect of the cell discharge current on the products distribution,” Appl. Catal. B, vol. 100, pp. 157–164, 2010.
    [41] J. Cheng, G. He, F. Zhang, “A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies,” Int. J. Hydrogen Energy, vol. 40, pp. 7348–7360, 2015.
    [42] W.H. Lee, A.D. Mohanty, C. Bae, “Fluorene-Based Hydroxide Ion Conducting Polymers for Chemically Stable Anion Exchange Membrane Fuel Cells,” ACS Macro Lett., vol. 4, pp. 453–457, 2015.
    [43] X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, G. He, “Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane,” J. Memb. Sci., vol. 523, pp. 216-224, 2017.
    [44] G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, “An assessment of alkaline fuel cell technology,” Int. J. Hydrogen Energy, vol. 27, pp. 507–526, 2002.
    [45] S.H. Lee, J.C. Rasaiah, “Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water,” J. Chem. Phys., vol. 135, pp. 124505, 2011.
    [46] 吳千舜,「奈米複合離子交換薄膜的離子與分子多尺度動態行為之研究」,國立中央大學,博士論文,民國99年。
    [47] K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, “Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology,” Chem. Rev., vol. 104, pp. 4637–4678, 2004.
    [48] A.Z. Weber, J. Newman, “Transport in polymer-electrolyte membranes. III. Model validation in a simple fuel-cell model,” J. Electrochem. Soc., vol. 151, pp. A326–A339, 2004.
    [49] A.Z. Weber, J. Newman, “Transport in polymer-electrolyte membranes. II. Mathematical model,” J. Electrochem. Soc., vol. 151, pp. A311–A325, 2004.
    [50] X. Duan, S. Scheiner, “Analytic functions fit to proton transfer potentials,” J. Mol. Struct., vol. 270, pp. 173–185, 1992.
    [51] N. Laurs, P. Bopp, “Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution,” Berichte Der Bunsengesellschaft Für Physikalische Chemie, vol. 97, pp. 982–995, 1993.
    [52] M.R. Hibbs, M.A. Hickner, T.M. Alam, S.K. McIntyre, C.H. Fujimoto, C.J. Cornelius, “Transport properties of hydroxide and proton conducting membranes,” Chem. Mater., vol. 20, pp. 2566–2573, 2008.
    [53] K.N. Grew, W.K.S. Chiu, “A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes,” J. Electrochem. Soc., vol. 157, pp. B327–B337, 2010.
    [54] M. Dominik, “Proton transfer 200 years after von Grotthuss: insights from ab initio simulations,” ChemPhysChem, vol. 7, pp. 1848–1870, 2006.
    [55] S.J. Paddison, R. Paul, “The nature of proton transport in fully hydrated Nafion,” Phys. Chem. Chem. Phys., vol. 4, pp. 1158–1163, 2002.
    [56] P. Choi, N.H. Jalani, R. Datta, “Thermodynamics and proton transport in Nafion,” J. Electrochem. Soc., vol. 152, pp. E84–E89, 2005.
    [57] N. Li, M.D. Guiver, W.H. Binder, “Towards high conductivity in anion-exchange membranes for alkaline fuel cells,” ChemSusChem, vol. 6, pp. 1376–1383, 2013.
    [58] M.E. Tuckerman, D. Marx, M. Parrinello, “The nature and transport mechanism of hydrated hydroxide ions in aqueous solution,” Nature, vol. 417, pp. 925–929, 2002.
    [59] T. XU, “Ion exchange membranes: State of their development and perspective,” J. Memb. Sci., vol. 263, pp. 1–29, 2011.
    [60] G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, “Polymeric materials as anion exchange membranes for alkaline fuel cells,” Prog. Polym. Sci., vol. 36, pp. 1521–1557, 2011.
    [61] C.X. Lin, X.Q. Wang, E.N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, Q.L. Liu, “Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability,” J. Memb. Sci., vol. 541, pp. 358–366, 2017.
    [62] X. Wang, W. Sheng, Y. Shen, L. Liu, S. Dai, N Li, “N-cyclic quaternary ammonium-functionalized anion exchange membrane with improved alkaline stability enabled by aryl-ether free polymer backbones for alkaline fuel cells,” J. Membr. Sci., vol. 587, pp. 117135, 2019.
    [63] H.S. Dang, E.A. Weiber, P. Jannasch, “Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high performance anion exchange membranes,” J. Mater. Chem. A, vol. 3, pp. 5280–5284, 2015.
    [64] M. Irfan, E. Bakangura, N.U. Afsar, M. Hossain, J. Ran, “Preparation and performance evaluation of novel alkaline stable anion exchange membranes,” J. Power Sources, vol. 355, pp. 171–180, 2017.
    [65] F.H. Liu, C.X. Lin, E.N. Hu, Q. Yang, Q.G. Zhang, A.M. Zhu, Q.L. Liu, “Anion exchange membranes with well-developed conductive channels: Effect of the functional groups,” J. Memb. Sci., vol. 564, pp. 298–307, 2018.
    [66] X. Zhang, S. Li, P. Chen, J. Fang, Q. Shi, Q. Weng, X. Luo, X.Chen, Z. An, “Imidazolium functionalized block copolymer anion exchange membrane with enhanced hydroxide conductivity and alkaline stability via tailoring side chains,” Int. J. Hydrog. Energy, vol. 43, pp. 3716–3730, 2018.
    [67] C.M. Tuan, D. Kim, “Anion-exchange membranes based on poly(arylene ether ketone) with pendant quaternary ammonium groups for alkaline fuel cell application,” J. Membr. Sci., vol. 511, pp. 143–150, 2016.
    [68] S. Kim, S. Yang, D. Kim, “Poly(arylene ether ketone) with pendant pyridinium groups for alkaline fuel cell membranes,” Int. J. Hydrog. Energy, vol. 42, pp. 2496–12506, 2017.
    [69] C. M. Tuan, A. K. Patra, D. Kim, “Chemically modified poly(arylene ether ketone)s with pendant imidazolium groups: Anion exchange membranes for alkaline fuel cells,” Int. J. Hydrogen Energy, vol. 43, pp. 4517–4527, 2018.
    [70] G.C. Abuin, E.A. Franceschini, P. Nonjola, M.K. Mathe, M. Modibedi, H.R. Corti, “A high selectivity quaternized polysulfone membrane for alkaline direct methanol fuel cells,” J. Power Sources, vol. 279, pp. 450–459, 2015.
    [71] J. Cheng, G. Yang, K. Zhang, G. He, J. Jia, H. Yu, F. Gai, Li. Li, C. Hao, F. Zhang, “Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application,” J. Memb. Sci., vol. 501, pp. 100–108, 2016.
    [72] D.J. Kim, B.-N. Lee, S.Y. Nam, “Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell,” Int. J. Hydrog. Energy, vol. 42, pp. 23759–23767, 2017.
    [73] B.N. Lee, T.Y. Son, C.H. Park, T.H. Kim, S.Y. Nam, “Preparation and Characterization of Various Poly(ether ether ketone) Containing Imidazolium Moiety for Anion Exchange Membrane Fuel Cell Application,” J. Nanosci. Nanotechnol., vol. 18, pp. 6447–6454, 2018.
    [74] H.S. Dang, P. Jannasch, “Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes,” Macromolecules, vol. 48, pp. 5742−5751, 2015.
    [75] H. Long, K. Kim, B.S. Pivovar, “Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study,” J. Phys. Chem. C, vol. 116, pp. 9419−9426, 2012.
    [76] X. Chu, L. Liu, Y. Huang, M.D. Guiver, N. Li, “Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability,” J. Membr. Sci., vol. 578, pp. 39–250, 2019.
    [77] A.D. Mohanty, C.Y. Ryu, Y.S. Kim, C. Bae, “Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers,” Macromolecules, vol. 48, pp. 7085–7095, 2015.
    [78] M.G. Marino, K.D. Kreuer, “Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids,” ChemSusChem, vol. 8, pp. 513–523, 2015.
    [79] H. Hou, G. Sun, R. He, Z. Wu, B. Sun, “Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell,” J. Power Sources, vol. 182, pp. 95–99, 2008.
    [80] B. Xing, O. Savadogo, “Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI),” Electrochem. Commun., vol. 2, pp. 697–702, 2000.
    [81] H. Hou, G. Suna, R. He, B. Sun, W. Jin, H. Liu, Q. Xin, “Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell,” Int. J. Hydrog. Energy, vol. 33, pp. 7172–7176, 2008.
    [82] Z. Wu, G. Sun, W. Jin, Q. Wang, H. Hou, K.-Y. Chan, Q. Xin, “Use of in situ polymerized phenol-formaldehyde resin to modify a Nafion® membrane for the direct methanol fuel cell,” J. Power Sources, vol. 167, vol. 309–314, 2007.
    [83] J. Fu, J. Qiao, H. Lv, J. Ma, X.-Z. Yuan, H. Wang, “Alkali Doped Poly(vinyl alcohol) (PVA) for Anion-exchange Membrane Fuel Cells: Ionic Conductivity, Chemical Stability and FT-IR Characterizations,” ECS Transactions, vol. 25, pp. 15–23, 2010.
    [84] H. Luo, G. Vaivars, B. Agboola, S. Mu, M. Mathe, “Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell,” Solid State Ion., vol. 208, pp. 52–55, 2012.
    [85] D. Herranz, R. Escudero-Cid, M. Montiel, C. Palacio, E. Fatás, P. Ocón, “Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells,” Renew. Energy, vol. 127, pp. 883–895, 2018.
    [86] J. Li, G. Xu, X. Luo, J. Xiong, Z. Liu, W. Cai, “Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application,” Appl. Energy, vol. 213, pp. 408-414, 2018.
    [87] J. Zheng, Q. Zhang, H. Qian, B. Xue, S. Li, S. Zhang, “Self-assembly prepared anion exchange membranes with high alkaline stability and organic solvent resistance,” J. Memb. Sci., vol. 522, pp. 159–167, 2017.
    [88] V. Elumalai, S. Dharmalingam, “Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15 /quaternised polysulfone composite membrane for alkaline fuel cell,” Microporous and mesoporous Matr., vol. 236, pp. 260–268, 2016.
    [89] K. Imai, Y. Kaneko, “Preparation of ammonium functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation,” Inorg. Chem., vol. 56, pp. 4133–4140, 2017.
    [90] L. Miao, X. Wang, Y. Fu, B. Hu, Y. Bai, C. Lu, “Quaternized polyhedral oligomeric silsesquioxanes (QPOSS) modified polysulfone-based composite anion exchange membranes,” Solid State Ion., vol. 309, pp. 170–179, 2017.
    [91] V. Vijayakumara, T.Y. Son, H.J. Kim, S.Y. Nam, “A facile approach to fabricate poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications,” J. Membr. Sci., vol. 591, pp. 117314, 2019.
    [92] Y.L. Liu, Y.H. Su, C.M. Chang, Suryani, D.M. Wang, J.Y. Lai, “Preparation and applications of nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells,” J. Mater. Chem., vol. 20, pp. 4409–4416, 2010.
    [93] C.M. Chang, Y.L. Liu, “Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs,” ACS Appl. Mater. Interfaces, vol. 3, pp. 2204–2208, 2011.
    [94] C.Y. Huang, J.S. Lin, W.H. Pan, C.M. Shih, Y.L. Liu , S.J. Lue, “Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes,” J. Power Source, vol. 303, pp. 267–277, 2016.
    [95] C.M. Chang, Y.L. Liu, “Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites,” Carbon, vol. 48, pp. 1289–1297, 2016.
    [96] X. Bi, H. Zhang, L. Dou, “Layered Double Hydroxide-Based Nanocarriers for Drug Delivery,” Pharmaceutics, vol. 6, pp. 298–332, 2014.
    [97] J.T. Fan, H. Zhu, R. Li, N.J. Chen, K.F. Han, “Layered double hydroxide-polyphosphazene based ionomer hybrid membranes with electric field-aligned domains for hydroxide transport,” J. Mater. Chem. A, vol. 2, pp. 8376–8385, 2014.
    [98] N. Chen, C. Long, Y. Li, D. Wang, H. Zhu, “High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications,” J. Memb. Sci., vol. 552, pp. 51–60, 2018.
    [99] K.R.M. Vidts, F.E. Du Prez, “Design of water-soluble block copolymers containing poly(4-vinylpyridine) by atom transfer radical polymerization,” Eur. Polym. J., vol. 42, pp. 43–50, 2016.
    [100] M. Schulze, U.A. Handge, S. Rangou, L. Lillepärg, V. Abetz, “Thermal properties, rheology and foams of polystyrene-block-poly(4-vinylpyridine) diblock copolymers,” Polymer, vol. 70, pp. 88–99, 2015.
    [101] A.S. Hoffman, “Hydrogels for biomedical applications,” Adv. Drug Del. Rev., vol. 64, pp. 18–23, 2012.
    [102] A. Kikuchi, T. Okano, “Pulsatile drug release control using hydrogels.” Adv. Drug Deliv. Rev., vol. 54, pp. 53–77, 2002.
    [103] T. Miyata, T. Uragami, K. Nakamae, “Biomolecule-sensitive hydrogels,” Adv. Drug Deliv. Rev., vol. 54, pp. 79–98, 2002.
    [104] C.-H. Yang, P.-W. Yang, T.-L. Lin, U.-S. Jeng, “The adsorption of DNA by cationic core-shell diblock copolymer polystyrene-block-poly(N-methyl 4-vinylpyridine iodide) micelles,” Colloids Surf. B, vol. 176, pp. 325–333, 2019.
    [105] J. Kerres, A. Ullrich, F. Meier, T. Häring, “Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells” Solid State Ion., vol. 125, pp. 243–249, 1999.
    [106] J. Kerres, A. Ullricha, Th. Häring, M. Baldauf, U. Gebhardt, W. Preidel, “Preparation, characterization and fuel cell application of new acid-base blend membranes,” J. New Mater. Electrochem. Syst., vol. 3, pp. 229–239, 2000.
    [107] J.C. Woong, S. Venkataramani, S.C. Kim, “Modification of Nafion membrane using poly (4-vinyl pyridine) for direct methanol fuel cell,” Polym. Int., vol. 55, pp. 491–499, 2006.
    [108] S. Min, D. Kim, “SAXS cluster structure and properties of sPEEK/PEI composite membranes for DMFC applications,” Solid State Ion., vol. 180, pp. 1690–1693, 2010.
    [109] C. Zhao, Z. Wang, D. Bi, H. Lin, K. Shao, T. Fu, S. Zhong, H. Na, “Blend membranes based on disulfonated poly(aryl ether ether ketone)s (SPEEK) and poly(amide imide) (PAI) for direct methanol fuel cell usages,” Polymer, vol. 48, pp. 3090–3097, 2007.
    [110] V. Neagu, I. Bunia, I. Plesca, “Ionic polymers–VI. Chemical stability of strong base anion exchangers in aggressive media,” Polym. Degrad. Stab., vol. 70, pp. 463–468, 2000.
    [111] T. Sata, “Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis,” J. Membr. Sci., vol. 93, pp. 117–135, 1994.
    [112] T. Sata, K. Kawamura, K. Matsusaki, “Electrodialytic transport properties of anion-exchange membranes prepared from poly(vinyl alcohol), poly(N-ethyl 4-vinylpyridinium salt) and β-cyclodextrin,” J. Membr. Sci., vol. 181, pp. 167–178, 2001.
    [113] T. Sata, T. Yamaguchi, K. Matsusaki, “Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions,” J. Phys. Chem., vol. 99, pp. 12875–12882, 2002.
    [114] T. Sata, Y. Yamane, K. Matsusaki, “Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups,” J. Polym. Sci. A Polym. Chem., vol. 36, pp. 49–58, 1998.
    [115] T. Sata, M. Tsujimoto, T. Yamaguchi, K. Matsusaki, “Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature,” J. Membr. Sci., vol. 112, pp. 161–170, 1996.
    [116] B. Bauer, H. Strathmann, F. Effenberger, “Anion-exchange membranes with improved alkaline stability,” Desalination, vol. 79, pp. 125–144, 1990.
    [117] J. Fang, Y. Wu, Y. Zhang, M. Lyu, J. Zhao, “Novel anion exchange membranes based on pyridinium groups and fluoroacrylate for alkaline anion exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 40, pp. 12392–12399, 2015.
    [118] R. Souzy, B. Ameduri, “Functional fluoropolymers for fuel cell membranes,” Prog. Polym. Sci., vol. 30, pp. 644–687, 2005.
    [119] Y. Zhang, J. Fang, Y. Wu, H. Xu, X. Chi, W. Li, Y. Yang, G. Yan, Y. Zhuang, “Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells,” J. Colloid Interface Sci., vol. 381, pp. 59–66, 2012.
    [120] P.P. Chu, C.-S. Wu, P.-C. Liu, T.-H. Wang, J.-P. Pan, “Proton exchange membrane bearing entangled structure: Sulfonated poly(ether ether ketone)/bismaleimide hyperbranch,” Polymer, vol. 51, pp. 1386–1394, 2010.
    [121] 陳品豪,「Nafion改質雙馬來醯亞胺複合薄膜於鹼性乙醇燃料電池的應用」,國立中央大學,碩士論文,民國100年。
    [122] https://www.taifer.com.tw/PublicationArticleDetailC004000.aspx?Cond =a3ba66e4-ba30-47ab-83d3-cdbadf6f3cc1
    [123] https://www.wikiwand.com/zhhk/%E6%B6%B2%E6%99%B6%E6%98% BE%E7%A4%BA%E5%99%A8
    [124] W. Eerenstein, N.D. Mathur, J.F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, pp. 759, 2006
    [125] C.A. Martin, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, vol. 46, pp. 877–886, 2005.
    [126] H. Wang, H. Zhang, W. Zhao, W. Zhang, G. Chen, “Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement,” Compos. Sci. Technol., vol. 68, pp. 238–243, 2008.
    [127] W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, Z. Xu, “Electric energy storage properties of poly(vinylidene fluoride),” Appl. Phys. Lett., vol. 96, pp. 192905, 2011.
    [128] P. Martins, A.C. Lopes, S. Lanceros-Mendez, “Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,” Prog. Polym. Sci., vol. 39, pp. 683–706, 2014.
    [129] M.Y. Chung, D.C. Lee, “Electrical Properties of Polyvinylidene Fluoride Films Prepared by the High Electric Field Applying Method,” J. Korean Phys. Soc., vol. 38, pp. 117–122, 2001.
    [130] M. Wegener, “Polarization-electric field hysteresis of ferroelectric PVDF films: Comparison of different measurement regimes,” Rev. Sci. Instrum., vol. 79, pp. 106103, 2008.
    [131] C. Gehin, J. Persello, D. Charraut, B. Cabane, “Electrorheological properties and microstructure of silica suspensions,” J. Colloid Interface Sci., vol. 273, pp. 658–667, 2004.
    [132] M. Parthasarathy, D.J. Klingenberg, “Electrorheology: Mechanisms and models,” Mater. Sci. Eng. R Rep., vol.17, pp. 57–103, 1996.
    [133] C.P. Bowen, R.E. Newnham, C.A. Randall, “Dielectric properties of dielectrophoretically assembled particulate-polymer composites,” J. Mater. Res., vol. 13, pp. 205–210, 1998.
    [134] G. Kim, Y.M. Shkel, “Polymeric composites tailored by electric field,” J. Mater. Res., vol. 19, pp. 1164–1174, 2004.
    [135] Y. Oren, V. Freger, C. Linder, “Highly conductive ordered heterogeneous ion-exchange membranes,” J. Membr. Sci., vol. 239, pp. 17–26, 2004.
    [136] V. Tomer, C.A. Randall, G. Polizos, J. Kostelnick, E. Manias, “High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites,” J. Appl. Phys., vol. 103, 034115, 2008.
    [137] D. Liu, M.Z. Yates, “Electric field processing to control the structure of poly (vinylidene fluoride) composite proton conducting membranes,” J. Membr. Sci., vol. 326, pp. 539–548, 2009.
    [138] H.-L. Lin, T.L. Yu, F.-H. Han, “A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC,” J. Polym. Res., vol. 13, pp. 379–385, 2006.
    [139] X. Wei, M.Z. Yates, “Nafion®/polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene composite membranes with electric field-aligned domains for improved direct methanol fuel cell performance,” J. Power Sources, vol. 195, pp. 736–743, 2010.
    [140] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, “Modified Nafion®-based membranes for use in direct methanol fuel cells,” Solid State Ion., vol. 150, pp. 115–122, 2002.
    [141] C.H. Rhee, H.K. Kim, H. Chang, J.S. Lee, “Nafion/Sulfonated Montmorillonite Composite:  A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells,” Chem. Mater., vol. 17, pp. 1691–1697, 2005.
    [142] D. Liu, M.Z. Yates, “Tailoring the structure of S-PEEK/PDMS proton conductive membranes through applied electric fields,” J. Membr. Sci., vol. 322, pp. 256–264, 2008.
    [143] H. Zarrin, J. Fu, G. Jiang, S. Yoo, J. Lenos, M. Fowler, Z. Chen, “Quaternized graphene oxide nanocomposites as fast hydroxide conductors,” ACS Nano, vol. 9, pp. 2028–2037, 2015.
    [144] B. Shi, Y. Li, H. Zhang, W. Wu, R. Ding, J. Dang, J. Wang, “Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix,” J. Membr. Sci., vol. 498, pp. 242–253, 2016.
    [145] T. Feng, B. Lin, S. Zhang, N. Yuan, F. Chu, M. Hickner, C. Wang, L. Zhu, J. Ding, “Imidazolium-based organic-inorganic hybrid anion exchange membranes for fuel cell applications,” J. Membr. Sci., vol. 508, pp. 7–14, 2016.
    [146] Y. Wu, C. Wu, J. Varcoe, S. Poynton, T. Xu, Y. Fu, “Novel silica/poly(2, 6-dimethyl-1,4-phenylene oxide) hybrid anion exchange membranes for alkaline fuel cells: effect of silica content and the single cell performance,” J. Power Sources, vol. 195, pp. 3069–3076, 2010.
    [147] S. Zhao, J. Ren, Y. Wang, J. Zhang, “Electric field processing to control the structure of titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchange membranes,” J. Membr. Sci., vol. 437, pp. 65–71, 2013.
    [148] M.D. Stamate, “On the dielectric properties of dc magnetron TiO2 thin films,” Appl. Surf. Sci., vol. 218, pp. 318–323, 2003.
    [149] J. Fan, H. Zhu, R. Li, N. Chen, K. Han, “Layered double hydroxide-polyphosphazene based ionomer hybrid membranes with electric field-aligned domains for hydroxide transport,” J. Mater. Chem., vol. 2, pp. 8376–8385, 2014.
    [150] D. Wang, N. Chen, C. Long, C. Lu, Y. Li, H. Zhu, F. Wang, “Electric-field-aligned functionalized-layered double hydroxide/polyphenyl ether composite membrane for ion transport,” Int. J. Hydrogen Energy, vol. 44, pp. 13851–13863, 2019.
    [151] Y. Chen, Z. Li, N. Chen, R. Li, Y. Zhang, K. Li, F. Wang, H. Zhu. “A new method for improving the conductivity of alkaline membrane by incorporating TiO2-ionic liquid composite particles,” Electrochim Acta, vol. 255, pp. 335–346, 2017.
    [152] Chen N, Long C, Li Y, Wang D, Lu C, Zhu H, Yu J. “Three-decker strategy based on multifunctional layered double hydroxide to realize high-performance hydroxide exchange membranes for fuel cell applications,” ACS Appl. Mater. Interfaces, vol. 10, pp. 18246–18256, 2018.
    [153] H. Zhu, R. Li, F. Wang, N. Chen, Z. Li, “Poly tris (1-imidazolyl) benzene ionic liquids/Poly (2,6-dimethyl phenylene oxide) composite membranes for anion exchange membrane fuel cells,” J. Mater. Sci., vol. 52, pp. 11109–11119, 2017.
    [154] 黃奕雲,「電場誘導聚乙烯改質改質雙馬來醯亞胺複合薄膜於鹼性乙醇燃料電池之應用」,國立中央大學,碩士論文,民國107年。
    [155] H.-L. Su, J.-M. Hsu, J.-P. Pan, T.-H. Wang, F.-E. Yu, C.-S. Chern, “Kinetic and structural studies of the polymerization of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid,” Polym. Eng. Sci., vol. 51, pp. 1188–1197, 2011.
    [156] E.-F. Yu, J.-M. Hsu, J.-P. Pan, T.-H. Wang, C.-S. Chern, “Kinetics of Michael addition polymerizations of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid,” Polym. Eng. Sci., vol. 53, pp. 204–211, 2012.
    [157] https://www-structmed.cimr.cam.ac.uk/Course/Basic_diffraction/ Diffraction.html
    [158] https://glossary.periodni.com/glossary.php?en=Ostwald%E2%80% 99s+viscometer
    [159] https://zh.wikipedia.org/wiki/%E5%BA%94%E5%8A%9B-%E5% BA%94%E5%8F%98%E6%9B%B2%E7%BA%BF

    QR CODE
    :::