| 研究生: |
吳東昇 Dong-Sheng Wu |
|---|---|
| 論文名稱: |
電場誘導聚(4-乙烯吡啶)改質雙馬來醯亞胺複合薄膜於鹼性直接乙醇燃料電池之應用 |
| 指導教授: |
諸柏仁
Po-Jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 鹼性直接乙醇燃料電池 、改質雙馬來醯亞胺聚合物 、聚(4-乙烯吡啶) |
| 外文關鍵詞: | alkaline direct ethanol fuel cell, modified bismaleimide, poly(4-vinylpyridine) |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,鹼性燃料電池的發展受到各界矚目,因其使用非白金觸媒,而能降低出售價格。良好的鹼性燃料電池薄膜需要高離子傳導率及低燃料竄透,但要同時兼具兩者成為鹼性燃料電池作為商業材料的阻礙之一。
本研究將高分岐結構的改質雙馬來醯亞胺聚合物(mBMI)與聚(4-乙烯吡啶) (P4VP)透過氫鍵作用力與酸鹼作用力而形成semi-IPN (半互穿網路)結構。透過mBMI帶有鹼基的官能基將水分子與氫氧根離子保留於複合薄膜中,以協助離子傳導,因此隨著mBMI添加含量增加,離子傳導度隨之上升;此外,因高分歧結構的mBMI與P4VP形成緻密結構,使複合薄膜在吸附高含量的水分的期間保有極佳的尺寸穩定性。另外,semi-IPN結構也能有效阻絕燃料竄透,因而提高電池整體的效能。
為進一步改善複合薄膜之物性,本研究以外加電場極化方式成膜,使薄膜內電負度較大的原子(如:N、O等)或具有共振性質的結構(如:苯環等)暴露於外以增加親水性,同時形成有序的親水傳導通道使非結晶區變得更加緻密。相較於無電場極化下的複合薄膜,外加電場誘導的複合薄膜展現較優越的離子傳導率(1.33×10-2~1.85×10-2 S/cm)以及低乙醇竄透率(6.15×10-8~4.02×10-8 cm2/s),同時也有效提高薄膜選擇率。
本研究顯示以外加電場誘導方式製備複合薄膜,不僅能提升離子傳導度、降低燃料竄透率等特性之外,在物性的方面也有增長,像是提高複合薄膜的化學穩定性、熱穩定性以及機械強度等,在最後的ADEFC單電池測試中,其電流密度為 112 mA/cm2時,具有最大功率密度為 13.66 mW/cm2,顯示此類型複合薄膜可應用於鹼性直接乙醇燃料電池中。
Being able to use non-platinum based catalyst which promises substantial fuel cell cost reduction, alkaline fuel cell received growing interests especially in the development of key fuel cell materials. Previous attempts to develop alkaline ionic exchange membrane encounter the dilemma that factors to enhance one of the cardinal properties: conductivity, low ethanol permeability, and mechanical/chemical stability are usually achieved at the expanse of the rest. This situation constitutes the major hindrance to rapid commercialization of alkaline fuel cell.
In this study, we report a novel approach in preparing fuel cell membrane based on the composite system of poly(4-vinylpyridine) (P4VP) polymer reinforced by bismaleimide (mBMI) hyper-branch oligomer. P4VP and mBMI form miscible blends through intermolecular hydrogen bonding between –NH (mBMI) and –N (P4VP). This composite shows high ionic conductivity because the hyper-branched oligomer served both to institute mechanical/chemical stability, but the specific functional groups also promotes OH- transport and repels alcohol due to its huge solubility parameters difference from that of alcohol. As a result, the composite membrane exhibited simultaneous increase of both the ionic conductivity; a pronounced reduction of alcohol permeability and enhanced membrane strength.
Most interestingly, preparing membrane under externally applied electric field (E-F poling) initiated changes in the membrane morphology that leads to further improvement of these physical properties. The physical, chemical and electronic properties of the two series of P4VP / mBMI membranes with and without electric field-induced composite membranes are compared through Alkaline stability, Fenton test, TGA and XRD analyses. The results confirmed membrane prepared under applying external electric field displayed high ionic conductivity; low fuel permeation; high mechanical strength and high chemical stability.
After E-F poling, the composite membrane displays ionic conductivity of (1.33×10-2 ~ 1.85×10-2 S/cm) and low ethanol permeation (6.15×10-8 ~ 4.02×10-8 cm2/s); yielding record high ethanol selectivity ratio ( > 4.60×105 S s cm-3). The maximum power density reach up to 13.66 mW/cm2 with a current density at 112 mA/cm2. This improvement is attributed first to the entangled P4VP with mBMI chain and the realignment of the twisted helical segment under external electric field which induced more ordered ion conducting channel, tougher membrane strength and dense polymer chain packing. As results of these structure attributes, fuel cell membrane bearing high ion conductivity; low fuel permeation; high membrane strength; and high chemical stability can be established, simultaneously.
[1] https://en.wikipedia.org/wiki/Proton-exchange_membrane_fuel_cell
[2] http://www.ele.energy.dtu.dk/Research/Fuel-cells
[3] L. An, and R. Chen, “Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production,” J. Power Sources, vol. 329, pp. 484–501, 2016.
[4] H. Vaghari, H. Jafarizadeh-Malmiri, A. Berenjian and N. Anarjan, “Recent advances in application of chitosan in fuel cells,” Sustain. Chem. Process., vol. 1, pp. 16, 2013.
[5] D.R. Dekel, “Review of cell performance in anion exchange membrane fuel cells," J. Power Sources, vol. 375, pp. 158–169, 2018.
[6] https://panx.asia/archives/51225
[7] 黃鎮江,燃料電池(修訂版),全華科技圖書股份有限公司,台北市,民國104年。
[8] V. Vijayakumar, T.Y. Son, and S.Y. Nam, “Recent advances in composite polymer electrolyte membranes for fuel cell,” Appl. Chem. Eng., vol. 30, pp. 1–10, 2019.
[9] S. Lu, J. Pan, A. Huang, L. Zhuang, and J. Lu, “Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts,” PNAS, vol. 105, pp. 20611–20614, 2008.
[10] G. Merle, M. Wessling, and K. Nijmeijer, “Anion exchange membranes for alkaline fuel cells: A review,” J. Membr. Sci., vol. 377, pp. 1–35, 2011.
[11] P. Gouérec, L. Poletto, J. Denizot, E. Sanchez-Cortezon, and J.H. Miners, “The evolution of the performance of alkaline fuel cells with circulating electrolyte,” J. Power Sources, vol. 129, pp. 193–204, 2004.
[12] E. Gülzow, and M. Schulze, “Long-term operation of AFC electrodes with CO2 containing gases,” J. Power Sources, vol. 127, pp. 243–251, 2004.
[13] N.J. Robertson, H.A. Kostalik, T.J. Clark, P.F. Mutolo, H.D. Abruna, G.W. Coates, H.D. Abrunna, and G.W. Coates, “Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications,” J. Am. Chem. Soc., vol. 132, pp. 3400–3404, 2010.
[14] M. Cifrain, and K.V. Kordesch, “Advances, aging mechanism and lifetime in AFCs with circulating electrolytes,” J. Power Sources, vol. 127, pp. 234–242, 2004.
[15] Tantram ADS. Fuel requirements for fuel cell. In: Critchley GN, editor. The future of fuel technology: proceedings of a conference held in by the institute of fuel at the invitation of, and in collaboration with, the Royal Institution of Engineers in the Netherlands, Amsterdam, May 1963, Elsevier; 2014. p. 95–110.
[16] S. Song, and P. Tsiakaras, “Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs),” Appl. Catal. B, vol. 63, pp. 187–193, 2006.
[17] Y. Oh, S.K. Kim, D.H. Peck, J.S. Jang, J. Kim, and D.H. Jung, “Improved performance using tungsten carbide/carbon nanofiber based anode catalysts for alkaline direct ethanol fuel cells,” Int. J. Hydrog. Energy, vol. 39, pp. 15907–15912, 2014.
[18] D.M. Fadzillah, S.K. Kamarudin, M.A. Zainoodin, and M.S. Masdar,” Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview,” Int. J. Hydrog. Energy, vol. 44, pp. 3031–3054, 2019.
[19] Y. Li, T. Zhao, and Z. Liang, “Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells,” J. Power Sources, vol. 187, pp. 387–392, 2009.
[20] S. Heysiattalab, and M. Shakeri, “2D analytical model for direct ethanol fuel cell performance prediction,” Smart Grid Renew Energy, vol. 2, pp. 427–433, 2011.
[21] M.M. Ahmad, S.K. Kamarudin, W.R.W. Daud, and Z. Yaakub, “High power passive DMFC with low catalyst loading for small power generation,” Energy Convers. Manag., vol. 51, pp. 821–825, 2010.
[22] S.K. Kamarudin, W.R.W. Daud, A.Md. Som, A.W. Mohammad, S. Takriff, and M.S. Masdar,” The conceptual design of PEMFC system via simulation,” Chem. Eng. J., vol. 103, pp. 99–113, 2004.
[23] P. Ekdharmasuit, A. Therdthianwong, and S. Therdthianwong, “The role of an anode microporous layer in direct ethanol fuel cells at different ethanol concentrations,” Int. J. Hydrog. Energy, vol. 39, pp. 1775–1782, 2014.
[24] Q. Xu, T. Zhao, W. Yang, and R. Chen, “A flow field enable operating direct methanol fuel cells with highly concentrated methanol,” Int. J. Hydrog. Energy, vol. 36, pp. 830–838, 2011.
[25] T. Zhao, Y. Li, and S. Shen, “Anion-exchange membrane direct ethanol fuel cells: Status and perspective,” Front. Energy Power Eng. China, vol. 4, pp. 443–458, 2010.
[26] M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, and W.R.W. Daud, “Review: direct ethanol fuel cells,” Int. J. Hydrog. Energy, vol. 38, pp. 9438–9453, 2013.
[27] L. An, T.S. Zhao, Chen R, and Q.X. Wu, “A novel direct ethanol fuel cell with high power density,” J. Power Sources, vol. 196, pp. 6219–6222, 2011.
[28] J.P. Pereira, D.S. Falcão, V.B. Oliveira, and A.M.F.R. Pinto, “Performance of a passive direct ethanol fuel cell,” J. Power Sources, vol. 256, pp. 14–19, 2014.
[29] S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos, and P. Tsiakaras,” The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs,” Appl. Catal. B, vol. 55, pp. 65–72, 2005.
[30] S. Beyhan, C. Coutanceau, J.-M. Léger, T.W. Napporn, and F. Kadırgan, “Promising anode candidates for direct ethanol fuel cell: Carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method,” Int. J. Hydrogen Energy, vol. 38, pp. 6830–6841, 2013.
[31] L. An, T.S. Zhao, “Performance of an alkaline-acid direct ethanol fuel cell,” Int. J. Hydrogen Energy, vol. 36, pp. 9994–9999, 2011.
[32] Z. Zakaria, S.K. Kamarudin, S.N. Timmiati, “Membranes for direct ethanol fuel cells: An overview,” Appl. Energy, vol. 163, pp. 334–342, 2016.
[33] Y.S. Li, T.S. Zhao, Z.X. Liang, “Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells,” J. Power Sources, vol. 187, pp. 387–392, 2009.
[34] S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, “Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts,” PNAS, vol. 105, pp. 2611–20614, 2008.
[35] E. Antolini, E.R. Gonzalez, “Alkaline direct alcohol fuel cells,” J. Power Sources, vol. 195, pp. 431–3450, 2010.
[36] J.R. Varcoe, R.C. Slade, “Prospects for alkaline anion-exchange membranes in low temperature fuel cells,” Fuel cells, vol. 5, pp. 187–200, 2008.
[37] S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, “Direct ethanol fuel cells for transport and stationary applications – A comprehensive review,” Appl. Energy, vol. 145, pp. 80-103, 2015.
[38] L. An, T.S. Zhao, S. Shen, Q. Wu, R. Chen, “Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output,” J. Power Sources, vol. 196, pp. 186–190, 2011.
[39] A.M. Zainoodin, S.K. Kamarudin, W.R.W. Daud, “Electrode in direct methanol fuel cell,” Int. J. Hydrogen Energy, vol. 35, pp. 4606–4621, 2010.
[40] G. Andreadisa, V. Stergiopoulos, S. Song, P. Tsiakaras, “Direct ethanol fuel cells: the effect of the cell discharge current on the products distribution,” Appl. Catal. B, vol. 100, pp. 157–164, 2010.
[41] J. Cheng, G. He, F. Zhang, “A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies,” Int. J. Hydrogen Energy, vol. 40, pp. 7348–7360, 2015.
[42] W.H. Lee, A.D. Mohanty, C. Bae, “Fluorene-Based Hydroxide Ion Conducting Polymers for Chemically Stable Anion Exchange Membrane Fuel Cells,” ACS Macro Lett., vol. 4, pp. 453–457, 2015.
[43] X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, G. He, “Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane,” J. Memb. Sci., vol. 523, pp. 216-224, 2017.
[44] G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, “An assessment of alkaline fuel cell technology,” Int. J. Hydrogen Energy, vol. 27, pp. 507–526, 2002.
[45] S.H. Lee, J.C. Rasaiah, “Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water,” J. Chem. Phys., vol. 135, pp. 124505, 2011.
[46] 吳千舜,「奈米複合離子交換薄膜的離子與分子多尺度動態行為之研究」,國立中央大學,博士論文,民國99年。
[47] K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, “Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology,” Chem. Rev., vol. 104, pp. 4637–4678, 2004.
[48] A.Z. Weber, J. Newman, “Transport in polymer-electrolyte membranes. III. Model validation in a simple fuel-cell model,” J. Electrochem. Soc., vol. 151, pp. A326–A339, 2004.
[49] A.Z. Weber, J. Newman, “Transport in polymer-electrolyte membranes. II. Mathematical model,” J. Electrochem. Soc., vol. 151, pp. A311–A325, 2004.
[50] X. Duan, S. Scheiner, “Analytic functions fit to proton transfer potentials,” J. Mol. Struct., vol. 270, pp. 173–185, 1992.
[51] N. Laurs, P. Bopp, “Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution,” Berichte Der Bunsengesellschaft Für Physikalische Chemie, vol. 97, pp. 982–995, 1993.
[52] M.R. Hibbs, M.A. Hickner, T.M. Alam, S.K. McIntyre, C.H. Fujimoto, C.J. Cornelius, “Transport properties of hydroxide and proton conducting membranes,” Chem. Mater., vol. 20, pp. 2566–2573, 2008.
[53] K.N. Grew, W.K.S. Chiu, “A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes,” J. Electrochem. Soc., vol. 157, pp. B327–B337, 2010.
[54] M. Dominik, “Proton transfer 200 years after von Grotthuss: insights from ab initio simulations,” ChemPhysChem, vol. 7, pp. 1848–1870, 2006.
[55] S.J. Paddison, R. Paul, “The nature of proton transport in fully hydrated Nafion,” Phys. Chem. Chem. Phys., vol. 4, pp. 1158–1163, 2002.
[56] P. Choi, N.H. Jalani, R. Datta, “Thermodynamics and proton transport in Nafion,” J. Electrochem. Soc., vol. 152, pp. E84–E89, 2005.
[57] N. Li, M.D. Guiver, W.H. Binder, “Towards high conductivity in anion-exchange membranes for alkaline fuel cells,” ChemSusChem, vol. 6, pp. 1376–1383, 2013.
[58] M.E. Tuckerman, D. Marx, M. Parrinello, “The nature and transport mechanism of hydrated hydroxide ions in aqueous solution,” Nature, vol. 417, pp. 925–929, 2002.
[59] T. XU, “Ion exchange membranes: State of their development and perspective,” J. Memb. Sci., vol. 263, pp. 1–29, 2011.
[60] G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, “Polymeric materials as anion exchange membranes for alkaline fuel cells,” Prog. Polym. Sci., vol. 36, pp. 1521–1557, 2011.
[61] C.X. Lin, X.Q. Wang, E.N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, Q.L. Liu, “Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability,” J. Memb. Sci., vol. 541, pp. 358–366, 2017.
[62] X. Wang, W. Sheng, Y. Shen, L. Liu, S. Dai, N Li, “N-cyclic quaternary ammonium-functionalized anion exchange membrane with improved alkaline stability enabled by aryl-ether free polymer backbones for alkaline fuel cells,” J. Membr. Sci., vol. 587, pp. 117135, 2019.
[63] H.S. Dang, E.A. Weiber, P. Jannasch, “Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high performance anion exchange membranes,” J. Mater. Chem. A, vol. 3, pp. 5280–5284, 2015.
[64] M. Irfan, E. Bakangura, N.U. Afsar, M. Hossain, J. Ran, “Preparation and performance evaluation of novel alkaline stable anion exchange membranes,” J. Power Sources, vol. 355, pp. 171–180, 2017.
[65] F.H. Liu, C.X. Lin, E.N. Hu, Q. Yang, Q.G. Zhang, A.M. Zhu, Q.L. Liu, “Anion exchange membranes with well-developed conductive channels: Effect of the functional groups,” J. Memb. Sci., vol. 564, pp. 298–307, 2018.
[66] X. Zhang, S. Li, P. Chen, J. Fang, Q. Shi, Q. Weng, X. Luo, X.Chen, Z. An, “Imidazolium functionalized block copolymer anion exchange membrane with enhanced hydroxide conductivity and alkaline stability via tailoring side chains,” Int. J. Hydrog. Energy, vol. 43, pp. 3716–3730, 2018.
[67] C.M. Tuan, D. Kim, “Anion-exchange membranes based on poly(arylene ether ketone) with pendant quaternary ammonium groups for alkaline fuel cell application,” J. Membr. Sci., vol. 511, pp. 143–150, 2016.
[68] S. Kim, S. Yang, D. Kim, “Poly(arylene ether ketone) with pendant pyridinium groups for alkaline fuel cell membranes,” Int. J. Hydrog. Energy, vol. 42, pp. 2496–12506, 2017.
[69] C. M. Tuan, A. K. Patra, D. Kim, “Chemically modified poly(arylene ether ketone)s with pendant imidazolium groups: Anion exchange membranes for alkaline fuel cells,” Int. J. Hydrogen Energy, vol. 43, pp. 4517–4527, 2018.
[70] G.C. Abuin, E.A. Franceschini, P. Nonjola, M.K. Mathe, M. Modibedi, H.R. Corti, “A high selectivity quaternized polysulfone membrane for alkaline direct methanol fuel cells,” J. Power Sources, vol. 279, pp. 450–459, 2015.
[71] J. Cheng, G. Yang, K. Zhang, G. He, J. Jia, H. Yu, F. Gai, Li. Li, C. Hao, F. Zhang, “Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application,” J. Memb. Sci., vol. 501, pp. 100–108, 2016.
[72] D.J. Kim, B.-N. Lee, S.Y. Nam, “Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell,” Int. J. Hydrog. Energy, vol. 42, pp. 23759–23767, 2017.
[73] B.N. Lee, T.Y. Son, C.H. Park, T.H. Kim, S.Y. Nam, “Preparation and Characterization of Various Poly(ether ether ketone) Containing Imidazolium Moiety for Anion Exchange Membrane Fuel Cell Application,” J. Nanosci. Nanotechnol., vol. 18, pp. 6447–6454, 2018.
[74] H.S. Dang, P. Jannasch, “Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes,” Macromolecules, vol. 48, pp. 5742−5751, 2015.
[75] H. Long, K. Kim, B.S. Pivovar, “Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study,” J. Phys. Chem. C, vol. 116, pp. 9419−9426, 2012.
[76] X. Chu, L. Liu, Y. Huang, M.D. Guiver, N. Li, “Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability,” J. Membr. Sci., vol. 578, pp. 39–250, 2019.
[77] A.D. Mohanty, C.Y. Ryu, Y.S. Kim, C. Bae, “Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers,” Macromolecules, vol. 48, pp. 7085–7095, 2015.
[78] M.G. Marino, K.D. Kreuer, “Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids,” ChemSusChem, vol. 8, pp. 513–523, 2015.
[79] H. Hou, G. Sun, R. He, Z. Wu, B. Sun, “Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell,” J. Power Sources, vol. 182, pp. 95–99, 2008.
[80] B. Xing, O. Savadogo, “Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI),” Electrochem. Commun., vol. 2, pp. 697–702, 2000.
[81] H. Hou, G. Suna, R. He, B. Sun, W. Jin, H. Liu, Q. Xin, “Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell,” Int. J. Hydrog. Energy, vol. 33, pp. 7172–7176, 2008.
[82] Z. Wu, G. Sun, W. Jin, Q. Wang, H. Hou, K.-Y. Chan, Q. Xin, “Use of in situ polymerized phenol-formaldehyde resin to modify a Nafion® membrane for the direct methanol fuel cell,” J. Power Sources, vol. 167, vol. 309–314, 2007.
[83] J. Fu, J. Qiao, H. Lv, J. Ma, X.-Z. Yuan, H. Wang, “Alkali Doped Poly(vinyl alcohol) (PVA) for Anion-exchange Membrane Fuel Cells: Ionic Conductivity, Chemical Stability and FT-IR Characterizations,” ECS Transactions, vol. 25, pp. 15–23, 2010.
[84] H. Luo, G. Vaivars, B. Agboola, S. Mu, M. Mathe, “Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell,” Solid State Ion., vol. 208, pp. 52–55, 2012.
[85] D. Herranz, R. Escudero-Cid, M. Montiel, C. Palacio, E. Fatás, P. Ocón, “Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells,” Renew. Energy, vol. 127, pp. 883–895, 2018.
[86] J. Li, G. Xu, X. Luo, J. Xiong, Z. Liu, W. Cai, “Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application,” Appl. Energy, vol. 213, pp. 408-414, 2018.
[87] J. Zheng, Q. Zhang, H. Qian, B. Xue, S. Li, S. Zhang, “Self-assembly prepared anion exchange membranes with high alkaline stability and organic solvent resistance,” J. Memb. Sci., vol. 522, pp. 159–167, 2017.
[88] V. Elumalai, S. Dharmalingam, “Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15 /quaternised polysulfone composite membrane for alkaline fuel cell,” Microporous and mesoporous Matr., vol. 236, pp. 260–268, 2016.
[89] K. Imai, Y. Kaneko, “Preparation of ammonium functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation,” Inorg. Chem., vol. 56, pp. 4133–4140, 2017.
[90] L. Miao, X. Wang, Y. Fu, B. Hu, Y. Bai, C. Lu, “Quaternized polyhedral oligomeric silsesquioxanes (QPOSS) modified polysulfone-based composite anion exchange membranes,” Solid State Ion., vol. 309, pp. 170–179, 2017.
[91] V. Vijayakumara, T.Y. Son, H.J. Kim, S.Y. Nam, “A facile approach to fabricate poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications,” J. Membr. Sci., vol. 591, pp. 117314, 2019.
[92] Y.L. Liu, Y.H. Su, C.M. Chang, Suryani, D.M. Wang, J.Y. Lai, “Preparation and applications of nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells,” J. Mater. Chem., vol. 20, pp. 4409–4416, 2010.
[93] C.M. Chang, Y.L. Liu, “Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs,” ACS Appl. Mater. Interfaces, vol. 3, pp. 2204–2208, 2011.
[94] C.Y. Huang, J.S. Lin, W.H. Pan, C.M. Shih, Y.L. Liu , S.J. Lue, “Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes,” J. Power Source, vol. 303, pp. 267–277, 2016.
[95] C.M. Chang, Y.L. Liu, “Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites,” Carbon, vol. 48, pp. 1289–1297, 2016.
[96] X. Bi, H. Zhang, L. Dou, “Layered Double Hydroxide-Based Nanocarriers for Drug Delivery,” Pharmaceutics, vol. 6, pp. 298–332, 2014.
[97] J.T. Fan, H. Zhu, R. Li, N.J. Chen, K.F. Han, “Layered double hydroxide-polyphosphazene based ionomer hybrid membranes with electric field-aligned domains for hydroxide transport,” J. Mater. Chem. A, vol. 2, pp. 8376–8385, 2014.
[98] N. Chen, C. Long, Y. Li, D. Wang, H. Zhu, “High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications,” J. Memb. Sci., vol. 552, pp. 51–60, 2018.
[99] K.R.M. Vidts, F.E. Du Prez, “Design of water-soluble block copolymers containing poly(4-vinylpyridine) by atom transfer radical polymerization,” Eur. Polym. J., vol. 42, pp. 43–50, 2016.
[100] M. Schulze, U.A. Handge, S. Rangou, L. Lillepärg, V. Abetz, “Thermal properties, rheology and foams of polystyrene-block-poly(4-vinylpyridine) diblock copolymers,” Polymer, vol. 70, pp. 88–99, 2015.
[101] A.S. Hoffman, “Hydrogels for biomedical applications,” Adv. Drug Del. Rev., vol. 64, pp. 18–23, 2012.
[102] A. Kikuchi, T. Okano, “Pulsatile drug release control using hydrogels.” Adv. Drug Deliv. Rev., vol. 54, pp. 53–77, 2002.
[103] T. Miyata, T. Uragami, K. Nakamae, “Biomolecule-sensitive hydrogels,” Adv. Drug Deliv. Rev., vol. 54, pp. 79–98, 2002.
[104] C.-H. Yang, P.-W. Yang, T.-L. Lin, U.-S. Jeng, “The adsorption of DNA by cationic core-shell diblock copolymer polystyrene-block-poly(N-methyl 4-vinylpyridine iodide) micelles,” Colloids Surf. B, vol. 176, pp. 325–333, 2019.
[105] J. Kerres, A. Ullrich, F. Meier, T. Häring, “Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells” Solid State Ion., vol. 125, pp. 243–249, 1999.
[106] J. Kerres, A. Ullricha, Th. Häring, M. Baldauf, U. Gebhardt, W. Preidel, “Preparation, characterization and fuel cell application of new acid-base blend membranes,” J. New Mater. Electrochem. Syst., vol. 3, pp. 229–239, 2000.
[107] J.C. Woong, S. Venkataramani, S.C. Kim, “Modification of Nafion membrane using poly (4-vinyl pyridine) for direct methanol fuel cell,” Polym. Int., vol. 55, pp. 491–499, 2006.
[108] S. Min, D. Kim, “SAXS cluster structure and properties of sPEEK/PEI composite membranes for DMFC applications,” Solid State Ion., vol. 180, pp. 1690–1693, 2010.
[109] C. Zhao, Z. Wang, D. Bi, H. Lin, K. Shao, T. Fu, S. Zhong, H. Na, “Blend membranes based on disulfonated poly(aryl ether ether ketone)s (SPEEK) and poly(amide imide) (PAI) for direct methanol fuel cell usages,” Polymer, vol. 48, pp. 3090–3097, 2007.
[110] V. Neagu, I. Bunia, I. Plesca, “Ionic polymers–VI. Chemical stability of strong base anion exchangers in aggressive media,” Polym. Degrad. Stab., vol. 70, pp. 463–468, 2000.
[111] T. Sata, “Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis,” J. Membr. Sci., vol. 93, pp. 117–135, 1994.
[112] T. Sata, K. Kawamura, K. Matsusaki, “Electrodialytic transport properties of anion-exchange membranes prepared from poly(vinyl alcohol), poly(N-ethyl 4-vinylpyridinium salt) and β-cyclodextrin,” J. Membr. Sci., vol. 181, pp. 167–178, 2001.
[113] T. Sata, T. Yamaguchi, K. Matsusaki, “Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions,” J. Phys. Chem., vol. 99, pp. 12875–12882, 2002.
[114] T. Sata, Y. Yamane, K. Matsusaki, “Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups,” J. Polym. Sci. A Polym. Chem., vol. 36, pp. 49–58, 1998.
[115] T. Sata, M. Tsujimoto, T. Yamaguchi, K. Matsusaki, “Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature,” J. Membr. Sci., vol. 112, pp. 161–170, 1996.
[116] B. Bauer, H. Strathmann, F. Effenberger, “Anion-exchange membranes with improved alkaline stability,” Desalination, vol. 79, pp. 125–144, 1990.
[117] J. Fang, Y. Wu, Y. Zhang, M. Lyu, J. Zhao, “Novel anion exchange membranes based on pyridinium groups and fluoroacrylate for alkaline anion exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 40, pp. 12392–12399, 2015.
[118] R. Souzy, B. Ameduri, “Functional fluoropolymers for fuel cell membranes,” Prog. Polym. Sci., vol. 30, pp. 644–687, 2005.
[119] Y. Zhang, J. Fang, Y. Wu, H. Xu, X. Chi, W. Li, Y. Yang, G. Yan, Y. Zhuang, “Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells,” J. Colloid Interface Sci., vol. 381, pp. 59–66, 2012.
[120] P.P. Chu, C.-S. Wu, P.-C. Liu, T.-H. Wang, J.-P. Pan, “Proton exchange membrane bearing entangled structure: Sulfonated poly(ether ether ketone)/bismaleimide hyperbranch,” Polymer, vol. 51, pp. 1386–1394, 2010.
[121] 陳品豪,「Nafion改質雙馬來醯亞胺複合薄膜於鹼性乙醇燃料電池的應用」,國立中央大學,碩士論文,民國100年。
[122] https://www.taifer.com.tw/PublicationArticleDetailC004000.aspx?Cond =a3ba66e4-ba30-47ab-83d3-cdbadf6f3cc1
[123] https://www.wikiwand.com/zhhk/%E6%B6%B2%E6%99%B6%E6%98% BE%E7%A4%BA%E5%99%A8
[124] W. Eerenstein, N.D. Mathur, J.F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, pp. 759, 2006
[125] C.A. Martin, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, vol. 46, pp. 877–886, 2005.
[126] H. Wang, H. Zhang, W. Zhao, W. Zhang, G. Chen, “Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement,” Compos. Sci. Technol., vol. 68, pp. 238–243, 2008.
[127] W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, Z. Xu, “Electric energy storage properties of poly(vinylidene fluoride),” Appl. Phys. Lett., vol. 96, pp. 192905, 2011.
[128] P. Martins, A.C. Lopes, S. Lanceros-Mendez, “Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,” Prog. Polym. Sci., vol. 39, pp. 683–706, 2014.
[129] M.Y. Chung, D.C. Lee, “Electrical Properties of Polyvinylidene Fluoride Films Prepared by the High Electric Field Applying Method,” J. Korean Phys. Soc., vol. 38, pp. 117–122, 2001.
[130] M. Wegener, “Polarization-electric field hysteresis of ferroelectric PVDF films: Comparison of different measurement regimes,” Rev. Sci. Instrum., vol. 79, pp. 106103, 2008.
[131] C. Gehin, J. Persello, D. Charraut, B. Cabane, “Electrorheological properties and microstructure of silica suspensions,” J. Colloid Interface Sci., vol. 273, pp. 658–667, 2004.
[132] M. Parthasarathy, D.J. Klingenberg, “Electrorheology: Mechanisms and models,” Mater. Sci. Eng. R Rep., vol.17, pp. 57–103, 1996.
[133] C.P. Bowen, R.E. Newnham, C.A. Randall, “Dielectric properties of dielectrophoretically assembled particulate-polymer composites,” J. Mater. Res., vol. 13, pp. 205–210, 1998.
[134] G. Kim, Y.M. Shkel, “Polymeric composites tailored by electric field,” J. Mater. Res., vol. 19, pp. 1164–1174, 2004.
[135] Y. Oren, V. Freger, C. Linder, “Highly conductive ordered heterogeneous ion-exchange membranes,” J. Membr. Sci., vol. 239, pp. 17–26, 2004.
[136] V. Tomer, C.A. Randall, G. Polizos, J. Kostelnick, E. Manias, “High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites,” J. Appl. Phys., vol. 103, 034115, 2008.
[137] D. Liu, M.Z. Yates, “Electric field processing to control the structure of poly (vinylidene fluoride) composite proton conducting membranes,” J. Membr. Sci., vol. 326, pp. 539–548, 2009.
[138] H.-L. Lin, T.L. Yu, F.-H. Han, “A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC,” J. Polym. Res., vol. 13, pp. 379–385, 2006.
[139] X. Wei, M.Z. Yates, “Nafion®/polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene composite membranes with electric field-aligned domains for improved direct methanol fuel cell performance,” J. Power Sources, vol. 195, pp. 736–743, 2010.
[140] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, “Modified Nafion®-based membranes for use in direct methanol fuel cells,” Solid State Ion., vol. 150, pp. 115–122, 2002.
[141] C.H. Rhee, H.K. Kim, H. Chang, J.S. Lee, “Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells,” Chem. Mater., vol. 17, pp. 1691–1697, 2005.
[142] D. Liu, M.Z. Yates, “Tailoring the structure of S-PEEK/PDMS proton conductive membranes through applied electric fields,” J. Membr. Sci., vol. 322, pp. 256–264, 2008.
[143] H. Zarrin, J. Fu, G. Jiang, S. Yoo, J. Lenos, M. Fowler, Z. Chen, “Quaternized graphene oxide nanocomposites as fast hydroxide conductors,” ACS Nano, vol. 9, pp. 2028–2037, 2015.
[144] B. Shi, Y. Li, H. Zhang, W. Wu, R. Ding, J. Dang, J. Wang, “Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix,” J. Membr. Sci., vol. 498, pp. 242–253, 2016.
[145] T. Feng, B. Lin, S. Zhang, N. Yuan, F. Chu, M. Hickner, C. Wang, L. Zhu, J. Ding, “Imidazolium-based organic-inorganic hybrid anion exchange membranes for fuel cell applications,” J. Membr. Sci., vol. 508, pp. 7–14, 2016.
[146] Y. Wu, C. Wu, J. Varcoe, S. Poynton, T. Xu, Y. Fu, “Novel silica/poly(2, 6-dimethyl-1,4-phenylene oxide) hybrid anion exchange membranes for alkaline fuel cells: effect of silica content and the single cell performance,” J. Power Sources, vol. 195, pp. 3069–3076, 2010.
[147] S. Zhao, J. Ren, Y. Wang, J. Zhang, “Electric field processing to control the structure of titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchange membranes,” J. Membr. Sci., vol. 437, pp. 65–71, 2013.
[148] M.D. Stamate, “On the dielectric properties of dc magnetron TiO2 thin films,” Appl. Surf. Sci., vol. 218, pp. 318–323, 2003.
[149] J. Fan, H. Zhu, R. Li, N. Chen, K. Han, “Layered double hydroxide-polyphosphazene based ionomer hybrid membranes with electric field-aligned domains for hydroxide transport,” J. Mater. Chem., vol. 2, pp. 8376–8385, 2014.
[150] D. Wang, N. Chen, C. Long, C. Lu, Y. Li, H. Zhu, F. Wang, “Electric-field-aligned functionalized-layered double hydroxide/polyphenyl ether composite membrane for ion transport,” Int. J. Hydrogen Energy, vol. 44, pp. 13851–13863, 2019.
[151] Y. Chen, Z. Li, N. Chen, R. Li, Y. Zhang, K. Li, F. Wang, H. Zhu. “A new method for improving the conductivity of alkaline membrane by incorporating TiO2-ionic liquid composite particles,” Electrochim Acta, vol. 255, pp. 335–346, 2017.
[152] Chen N, Long C, Li Y, Wang D, Lu C, Zhu H, Yu J. “Three-decker strategy based on multifunctional layered double hydroxide to realize high-performance hydroxide exchange membranes for fuel cell applications,” ACS Appl. Mater. Interfaces, vol. 10, pp. 18246–18256, 2018.
[153] H. Zhu, R. Li, F. Wang, N. Chen, Z. Li, “Poly tris (1-imidazolyl) benzene ionic liquids/Poly (2,6-dimethyl phenylene oxide) composite membranes for anion exchange membrane fuel cells,” J. Mater. Sci., vol. 52, pp. 11109–11119, 2017.
[154] 黃奕雲,「電場誘導聚乙烯改質改質雙馬來醯亞胺複合薄膜於鹼性乙醇燃料電池之應用」,國立中央大學,碩士論文,民國107年。
[155] H.-L. Su, J.-M. Hsu, J.-P. Pan, T.-H. Wang, F.-E. Yu, C.-S. Chern, “Kinetic and structural studies of the polymerization of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid,” Polym. Eng. Sci., vol. 51, pp. 1188–1197, 2011.
[156] E.-F. Yu, J.-M. Hsu, J.-P. Pan, T.-H. Wang, C.-S. Chern, “Kinetics of Michael addition polymerizations of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid,” Polym. Eng. Sci., vol. 53, pp. 204–211, 2012.
[157] https://www-structmed.cimr.cam.ac.uk/Course/Basic_diffraction/ Diffraction.html
[158] https://glossary.periodni.com/glossary.php?en=Ostwald%E2%80% 99s+viscometer
[159] https://zh.wikipedia.org/wiki/%E5%BA%94%E5%8A%9B-%E5% BA%94%E5%8F%98%E6%9B%B2%E7%BA%BF