跳到主要內容

簡易檢索 / 詳目顯示

研究生: 秦淑娟
Shu-Chaun Chin
論文名稱: 實驗室尺度異質性含水層之地下水熱傳輸試驗與模式分析
Experimental and numerical analysis of groundwater heat transport in a lab-scale heterogeneous aquifer
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 146
中文關鍵詞: 異質性含水層溫度示蹤劑熱傳輸砂箱試驗HYDRUS-2D
外文關鍵詞: Heterogeneous aquifer, Heat tracer, Heat transport, Sandbox experiment, HYDRUS-2D
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與化學示踪劑相比,溫度作為示踪劑除了可反映地下水流及熱傳輸的動態過程,還可以減少對環境的負面影響。為增進以溫度示踪劑推估含水層內水流及溫度傳遞行為之精確度,本研究通過建立異質性環境的砂箱來進行注水試驗,並以HYDRUS-2D數值模式進行模擬,其中模擬項目包含水溫、水流及熱傳輸的過程。數值模擬需材料的土壤特徵參數及熱性質參數,透過室內實驗取得,相關參數包含飽和水力傳導係數、非飽和土壤van Genuchten特徵曲線、熱導率及容積熱容等。砂箱試驗於室內恆溫環境下進行,砂箱長155公分、寬2公分、高55公分,砂箱左右各有一水槽調節水位,使左右邊界皆為定水頭,用蠕動馬達以定流量持續以單點注水方式注熱水5小時,觀察並量測相對高溫水注入相對低溫水中的熱傳輸動態歷程。試驗顯示在砂箱下半部的飽和區溫度受到熱水影響較為顯著,越接近注水點溫度上升越快,溫度達峰值時間越短,停止注水後溫度下降越快,並且最快降為室溫。數值模擬結果案例一能大致模擬砂箱注水情況,案例二模擬與試驗結果誤差較大。應用模型進行注水溫度與注入流量對熱傳輸距離影響測試時,在注入水溫與環境溫度溫較接近時,增加溫度的熱傳輸距離增幅較大,隨著注水溫度越大,距離增幅程度降低,表示一定程度升溫是有助於增加傳輸距離,但增溫的效果有限,效益會逐漸減小。


    Heat is one of tracers that can reflect groundwater flow and heat transport. Using temperature as a natural tracer, compared with chemical tracer, reduces negative impacts on the environment. In order to improve the accuracy of estimating the water flow and temperature transfer behavior in aquifers, this study employs experimental approaches and HYDRUS-2D numerical model to analyze the water temperature, water flow and heat transport. Laboratory experiments are also considered in this study to get sandbox material parameters that include hydraulic conductivity, van Genuchten parameter, thermal conductivity and volumetric heat capacity. The sandbox was placed at a constant temperature environment, which is 155 cm in length, 2 cm in width, and 55 cm in height. There are tanks on both left and right sides of the sandbox to control the water level. The hot water was injected into the sandbox by a single point with constant injection rate for 5 hours, and the dynamic process of heat transport was measured during the experiment. Experiments show that the temperature of the lower half of the sandbox is more significantly affected by hot water. The closer to the water injection point, the faster the temperature rise and the shorter the time to reach the temperature peak. After the water injection is stopped, the temperature drops quickly, and it drops to room temperature the fastest. The numerical simulation result of Case 1 can roughly simulate the water injection situation of the sand box, and the simulation and test results of Case 2 have large errors. When the model is used to test the influence of injection temperature and injection flow rate on the heat transfer distance, when the injected water temperature is close to the ambient temperature, the heat transfer distance increases as the temperature increases. As the water injection temperature increases, the increase in distance decreases. It means that a certain degree of temperature rise will help increase the transmission distance, but the effect of temperature rise is limited, and the benefits will
    gradually decrease.

    摘要 i Abstract ii 目錄 v 圖目錄 viii 表目錄 xiii 符號說明 xv 第一章 緒論 1 1-1 背景與動機 1 1-2 研究目的 2 1-3 文獻回顧 2 1-3-1 示蹤劑 2 1-3-2 地下水偵溫方法 5 1-3-3 數值模式分析地下水溫度 7 1-4 研究流程 7 第二章 研究方法 9 2-1 落水頭試驗(Falling-head test) 9 2-2 壓力鍋試驗(Pressure plate test) 10 2-3 熱性質試驗(Thermal property test) 12 2-4 砂箱注水試驗 14 2-4-1 分佈式光纖偵溫系統原理 14 2-4-2 砂箱介紹 15 2-4-3 砂箱材料 18 2-4-4 試驗設置 19 2-5 數值模式 HYDRUS-2D 23 2-5-1 控制方程式 23 2-5-2 初始條件 26 2-5-3 邊界條件 26 2-5-4 模型建置流程 27 2-5-5 敏感度分析 29 2-6 統計誤差 30 第三章 結果與討論 31 3-1 室內試驗結果 31 3-1-1 落水頭試驗 31 3-1-2 壓力鍋試驗 33 3-1-3 熱性質試驗 35 3-1-4 砂箱注水試驗 40 3-3 數值模式 HYDRUS-2D 57 3-3-1 敏感度分析 57 3-3-2 建模設定 70 3-3-3 穩態模型條件設定 72 3-3-4 注水模型條件設定 74 3-3-5 水力特徵參數率定 75 3-3-6 熱參數率定 79 3-3-7 溫度模擬結果 80 3-4 模擬與試驗結果分析 87 3-5 熱傳輸距離測試 99 第四章 結論與建議 102 4.1 結論 102 4.2 建議 103 參考資料 104 附錄一 111 附錄二 116 附錄三 117 附錄四 118 附錄五 121

    [1] Stonestrom, D.A.; Constantz, J. Heat as a tool for studying the movement of ground water near streams; US Department of the Interior, US Geological Survey: Virginia, US, 2003.
    [2] Davis, S.N.; Thompson, G.M.; Bentley, H.W.; Stiles, G. Ground-Water Tracers - A Short Review. Ground Water 1980, 18, 14-23.
    [3] Datta, P.S.; Bhattacharya, S.K.; Tyagi, S.K. 18O studies on recharge of phreatic aquifers and groundwater flow-paths of mixing in the Delhi area. Journal of Hydrology 1996, 176, 25-36.
    [4] Caissie, D.; Pollock, T.L.; Cunjak, R.A. Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of Hydrology 1996, 178, 137-157.
    [5] 刘安建. 油田微量物质井间示踪测试技术. CN1166964C, 2004.
    [6] McCarthy, K.A.; McFarland, W.D.; Wilkinson, J.M.; White, L.D. The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. Journal of Hydrology 1992, 135, 1-12.
    [7] Ellins, K.K.; Roman-Mas, A.; Lee, R. Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. Journal of Hydrology 1990, 115, 319-341.
    [8] Cook, P.G.; Favreau, G.; Dighton, J.C.; Tickell, S. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology 2003, 277, 74-88.
    [9] Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J. Estimation of Hydraulic Conductivity in an Alluvial System Using Temperatures. Ground Water 2004, 42, 890-901.
    [10] Anderson, M.P. Heat as a ground water tracer. Ground Water 2005, 43, 951-968.
    [11] Lapham, W.W. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity; 2337; 1989.
    [12] Silliman, S.E.; Booth, D.F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. Journal of Hydrology 1993, 146, 131-148.
    [13] Constantz, J.; Thomas, C.L. The Use of Streambed Temperature Profiles to Estimate the Depth, Duration, and Rate of Percolation Beneath Arroyos. Water Resources Research 1996, 32, 3597-3602.
    [14] Constantz, J.; Stewart, A.E.; Niswonger, R.; Sarma, L. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels. Water Resources Research 2002, 38, 52-51-52-13.
    [15] Klepikova, M.; Wildemeersch, S.; Hermans, T.; Jamin, P.; Orban, P.; Nguyen, F.; Brouyère, S.; Dassargues, A. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling. Journal of Hydrology 2016, 540, 812-823.
    [16] Stauffer, F.; Bayer, P.; Blum, P.; Giraldo, N.M.; Kinzelbach, W. Thermal use of shallow groundwater; CRC Press: Florida, US, 2019.
    [17] Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: New Jersey, 1979.
    [18] Irvine, D.J.; Simmons, C.T.; Werner, A.D.; Graf, T. Heat and Solute Tracers: How Do They Compare in Heterogeneous Aquifers? Groundwater 2015, 53, 10-20.
    [19] 周柏儀; 許世孟; 蔡美雯; 呂昱達; 俞旗文; 陳文山. 光纖光柵井下地溫感測系統之開發與實測. 岩盤工程研討會, 台中市, 台灣, 2014年10月23日.
    [20] 合立儀器股份有限公司. 美國 in-situ. http://www.startech-co.com.tw/zh-tw/product-427212/%E6%B0%B4%E8%B3%AA%E7%9B%A3%E6%B8%AC%E5%84%80%E5%99%A8-Aqua-TROLL-200.html.
    [21] 陳文福. 高雄地區地溫之量測與研究; 2016.
    [22] SiLiXA. XT-DTSTM. https://silixa.com/technology/xt-dts/.
    [23] Hurtig, E.; Großwig, S.; Jobmann, M.; Kühn, K.; Marschall, P. Fibre-optic temperature measurements in shallow boreholes: experimental application for fluid logging. Geothermics 1994, 23, 355-364.
    [24] Sakaguchi, K.; Matsushima, N. Temperature logging by the distributed temperature sensing technique during injection tests. Proceedings World Geothermal Congress, Kyushu, Japan, 5/28~6/10, 2000; pp. 1657-1661.
    [25] Long, A. Improving the economics of geothermal development through an oil and gas industry approach; 2009.
    [26] Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resources Research 2009, 45.
    [27] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone Journal 2016, 15, 1-25.
    [28] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal 2008, 7, 587-600.
    [29] Yadav, B.; Krishnan, P.; Shafeeq, P.M.; Parihar, C.M.; Aggarwal, P. Modelling soil thermal regime in wheat using HYDRUS-2D under diversified maize-wheat-mungbean cropping system. CATENA 2020, 194, 104765.
    [30] Wang, J.; Gong, S.; Xu, D.; Juan, S.; Mu, J. Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS-2D. Irrigation and Drainage 2013, 62, 97-106.
    [31] Brunetti, G.; Porti, M.; Piro, P. Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Applied Energy 2018, 221, 204-219.
    [32] Antonov, D.; Mallants, D.; Simunek, J.J.; Karastanev, D. Application of the HYDRUS (2D/3D) Inverse Solution Module for Estimating the Soil Hydraulic Parameters of a Quaternary Complex in Northern Bulgaria; PC-Progress: Prague, Czech Republic, 2013.
    [33] Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 1976, 12, 513-522.
    [34] METER. TEMPOS. http://publications.metergroup.com/Manuals/20645%20TEMPOS_Manual_Web.pdf.
    [35] Abramowitz, M.; Stegun, I.A. Handbook of mathematical functions with formulas, graphs, and mathematical tables; Martino Publishing: Mansfield Centre, 2014.
    [36] Ren, J.; Wang, X.; Shen, Z.; Zhao, J.; Yang, J.; Ye, M.; Zhou, Y.; Wang, Z. Heat tracer test in a riparian zone: Laboratory experiments and numerical modelling. Journal of Hydrology 2018, 563, 560-575.
    [37] 大翰科技股份有限公司. 分散式溫度感測光纖DTS. http://www.mpi-tech.com.tw/news_info.php?id=154.
    [38] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, Technical Manual, Version 2.0; PC Progress: Prague, Czech Republic, 2012.
    [39] Sophocleous, M. Analysis of water and heat flow in unsaturated-saturated porous media. Water Resources Research 1979, 15, 1195-1206.
    [40] DeVries, D.A. Thermal Properties of Soils. In Physics of Plant Environment, (Ed.), W.R.v.W., Ed.; North Holland: Amsterdam, 1963; pp. 210-235.
    [41] Šimůnek, J.; Suarez, D.L. UNSATCHEM-2D code for simulating two-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Version 1.1; 1993.
    [42] Chung, S.-O.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resources Research 1987, 23, 2175-2186.
    [43] Ma, R.; Zheng, C. Effects of Density and Viscosity in Modeling Heat as a Groundwater Tracer. Ground Water 2010, 48, 380-389.
    [44] Mayer, D.G.; Butler, D.G. Statistical validation. Ecological Modelling 1993, 68, 21-32.
    [45] Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis, Klute, A., Ed.; Madison: Wisconsin, US, 1986; pp. 383-411.
    [46] 涂展台. 茶園不同水土保持處理下土壤水份特性曲線之量測. 國立中興大學, 台中市, 1999.
    [47] Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resources Research 1988, 24, 755-769.
    [48] Ghuman, B.; Lal, R. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Science 1985, 139, 74-80.
    [49] Yadav, M.R.; Saxena, G.S. Effect of Compaction and Moisture Content on Specific Heat and Thermal Capacity of Soils. Journal of the Indian Society of Soil Science 1973, 21, 129-132.
    [50] Bristow, K.L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology 1998, 89, 75-84.
    [51] Abu-Hamdeh, N.H. Thermal Properties of Soils as affected by Density and Water Content. Biosystems engineering 2003, 86, 97-102.
    [52] Lallemand-Barres; Peaudecerf. Bureau de Recherches Géologiques et Miniéres; 1978.
    [53] Pfannkuch, H.O. Contribution a Ietude des deplacement de fluids miscible dans un milieu poreux. Revue de l'Institut Francais du Petrole 1962, 18, 215-270.
    [54] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, User Manual, Version 3.0; PC Progress: Prague, Czech Republic, 2018.

    QR CODE
    :::