跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱彥和
Yen-ho Chu
論文名稱: 利用電子迴旋共振化學氣相沉積法成長氫化非晶矽薄膜與p-i-n薄膜太陽能電池
Deposition Hydrogenated Amorphous Silicon Thin Film and p-i-n Solar Cell by Electron Cyclotron Resonance Chemical Vapor Deposition
指導教授: 張正陽
Jenq-yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 氫化非晶矽薄膜電子迴旋共振化學氣相沉積法
外文關鍵詞: ECR CVD, a-Si:H
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是以電子迴旋共振化學氣相沉積法(ECR-CVD)來探討薄膜特性與初步p-i-n太陽能電池的特性,ECR-CVD屬高密度電漿,主要是當磁場內的電子迴轉角頻率和入射微波頻率相同時產生共振吸收達到最大能量轉換。相較於傳統PECVD,ECR-CVD有以下幾項優點,如優異的沉積速率、無電極汙染、較高氣體使用率、低離子轟擊能等等。此實驗中我們將調變氫氣稀釋比例、微波功率、製程壓力、氣體總流量、氬氣總流量等參數來探討其對薄膜品質的影響,將會利用傅氏轉換紅外線光譜儀、紫外可見光光譜儀等儀器量測薄膜特性,也利用AM1.5太陽光模擬器、Keithley量測太陽電池的電性。實驗結果發現(1)在晶相過渡區前有較優異的薄膜品質特性,(2)微波功率和總氣體流量是影響沉積速率的主要因素,(3)製程壓力為其於薄膜特性的影響主因,因此製程壓力相當重要。我們在本質層實驗中挑選一組光暗電導比值最大的參數做為薄膜電池中的本質層,目前初步薄膜太陽電池效率(η)=1.03 %、開路電壓(VOC)=0.56 V、短路電流密度(JSC)=4.30 A/cm2 、填充因子(FF) =42.6%。


    This paper is based on electron cyclotron resonance chemical vapor deposition (ECR-CVD) to research the characteristics of a-Si:H and initial pin thin-film solar cell. ECR-CVD is a high-density plasma that the plasma generated in the ECR process is via resonant absorption of a microwave by electrons in a magnetic field and gas ionization via subsequent electron-atom collisions. Compared with conventional PECVD, ECR-CVD has several advantages, such as the excellent deposition rates, no electrode contamination, high gas utilization, low energy ion bombardment, and so on. This experiment we explored the film quality by modulation of hydrogen dilution ratio, microwave power, process pressure, total flow rate, Ar flow rate. Measured thin-film and solar cell properties by using Fourier transform infrared spectroscopy, UV-Vis spectrometer, AM1.5 sunlight simulator, Keithley 2400 etc.. Experimental results showed that (1) crystalline phase transition zone in front of the more outstanding film-quality features, (2) microwave power and total flow rate is the main factor affecting the deposition rate, (3) parameter of working pressure is quite important for thin-film quality. Finally, we selected a highest photo response value from intrinsic layer to growth solar cell, the efficiency (η) = 1.03%, open-circuit voltage (VOC) = 0.56 V, short-circuit current density (JSC) = 4.30 A/cm2, fill factor (FF) = 42.6%.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖表索引 vii 第一章 簡介 1 1.1 研究背景與動機 1 1.2 研究目的與方法 2 第二章 文獻回顧與基本原理 4 2.1 氫化非晶矽薄膜介紹 4 2.2.2 氫化非晶矽薄膜特性 8 2.2.3 氫化非晶矽薄膜太陽電池基本原理 14 2.2.4 電子迴旋共振化學氣相沉積法(ECR-CVD)原理 22 第三章 實驗裝置與量測儀器 24 3.1 ECR-CVD裝置介紹 24 3.1.1 進氣系統 25 3.1.2 抽氣系統與加熱系統 25 3.1.3 電漿系統 25 3.2 樣品製備與流程 26 3.2.1 試片清洗流程 26 3.2.2 單層膜製備流程 27 3.2.2 p-i-n 薄膜太陽電池製備流程 28 3.3 儀器量測與原理 29 3.3.1 Dektak 表面輪廓儀 29 3.3.2 電子槍蒸鍍系統(E-gun) 30 3.3.3 快速退火爐(ARTs-RTA) 31 3.3.5 傅氏轉換紅外線光譜儀(FTIR) 32 3.3.6 紫外可見光光譜儀 (UV-visible) 34 3.3.7 光暗電導量測 35 3.3.8 拉曼光譜量測儀(Raman spectrum) 36 第四章 實驗結果與討論 37 4.1 本質層(i-layer)特性量測與分析 37 4.1.1 氫氣稀釋比例的影響 39 4.1.2 微波功率的影響 45 4.1.3 製程腔體壓力的影響 50 4.1.5 氣體總流量的影響 56 4.1.4 氬氣流量的影響 62 4.2 薄膜太陽電池(p-i-n solar cell)特性量測與分析 68 4.2.1 p層厚度的影響 69 4.2.2 p層沉積溫度的影響 70 4.2.3 清腔的影響 72 4.2.4 i層厚度的影響(1) 73 4.2.5 i層厚度的影響(2) 75 4.2.6 p層溫度與i層厚度的影響 76 第五章 結論 78 參考文獻 79

    [1] Sterling, H. F. and R. C. G. Swann, Solid-State Electron. 8, 653 (1965)
    [2] Spear W. E. and P. G. LeComber, J. Non-Cryst. Solid 8-10, 727 (1972)
    [3] Spear W. E. and P. G. LeComber, Solid-State Communications, 17, 1193 (1975)
    [4] Spear W. E. and P. G. LeComber, Phil. Mag. 33, 935 (1976)
    [5] Triska, A., D. Dennison, and H. Fritzsche, Bull. Am. Phys. Soc. 20, 392 (1975)
    [6] Singh, R., Prakash, S., Shukla, N. N., Prasad, R., Physical Review B, Vol. 70, paper No. 115231 (2004)
    [7] Staebler, D.L., Wronski, C. R., Applied Physics Letters, Vol. 31, pp. 292-294 (1977)
    [8] Wagner, H., Beyer, W., Solid-State Communications, Vol. 48, pp. 585-587 (1983)
    [9] Bhattacharya, E., Mahan, A. H., Applied Physics Letters, Vol. 52, pp. 1587-1589 (1988)
    [10] Langford, A. A., M. L. Fleet, B. P. Nelson, W.A. Lanford, and N. Maley, Physical Review B, Vol.45, 13367 (1992)
    [11] Tauc, J., in: Optical properties of Solids, ed. by F. Abeles, p.277 (1972)
    [12] Akihisa Matsuda, Journal of Non-Crystalline Solids, Vol. 338, pp. 338-340 (2004)
    [13] Joao Pedro Conde, Applied Physics Letters, Vol. 36, pp. 38-49 (1997)
    [14] Flewitt, A.J. ; Milne, W.I., Proceedings of the IEEE, Vol. 93, pp. 1364-1373 (2005)
    [15] Ekanayake, G., Summers, S., Reehal, H.S., Photovoltaic Energy Conversion, Vol.2, pp. 1867-1870 (2003)

    QR CODE
    :::