跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉益銘
Yi-ming Liu
論文名稱: 手機相機顯微鏡之鏡頭設計
指導教授: 孫文信
Wen-Shing Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 77
中文關鍵詞: 顯微鏡鏡頭設計
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出手機相機顯微鏡的鏡頭設計,共分為三個部分,分別是物鏡、目鏡與相機,設計完後再匹配在一起。物鏡是5X放大率及NA等於0.25,目鏡為20X放大率,將物鏡目鏡和合而成100X放大率的顯微鏡,可單獨使用來觀察物體。相機為一個F/# 2.8 視角30度的300萬畫素鏡頭,與顯微鏡集合後,可拍攝顯微鏡觀察到的物體。
    最後完成設計其顯微鏡總長度為77mm有達到可攜式搭配手機相機使用最初設計的目的。


    The design of the cell phone camera microscope is introduced in this dissertation. There are three parts in this design; an objective, an eyepiece and a camera. Finally, combine objective, eyepiece and camera to form one system.
    The objective magnification and NA are 5X/0.25. The eyepiece magnification is 20X. By combining, we can design a 100X microscope system, it can be operated individually to observe the object.
    The camera is designed with F/# 2.8, half view angle of 30 degrees, and 3.0 megapixels. To combine camera and microscope, it can record the image.
    The total length of the microscope is about 77 mm. That accomplish the purpose of being portable and combining the cell phone camera.

    摘要 I Abstract II 誌謝辭 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1前言 1 1-2論文架構 3 第二章 架構與原理 4 2-1手機光學顯微鏡幾何光學 4 2-1-1 高斯式與牛頓式光學成像式 4 2-1-2 鏡面物像關係 8 2-1-3 物鏡原理 9 2-1-4 目鏡原理 11 2-1-5 相機原理 14 2-2系統架構 17 2-2-1 系統放大率 18 2-2-2 系統光圈及出入瞳架構 20 第三章 手機顯微鏡之鏡頭設計規格與優化目標 22 3-1訂定顯微鏡設計規格 22 3-1-1 光學顯微鏡評價標準 24 3-1-2 物鏡與目鏡設計規格 26 3-2相機設計規格 27 3-2-1 相機像高設定 27 3-2-2 系統視角設定 28 3-2-3 系統焦距設定 28 3-3相機優化目標制定 29 3-3-1 MTF (Modulation transfer function)要求 29 3-3-2橫向色差(Lateral color) 29 3-3-3光學畸變(Optical distortion) 29 3-3-4電視畸變(TV distortion) 30 3-3-5相對照度(Relative illumination) 30 3-4相機顯微鏡設計規格 31 3-5設計流程與問題 31 3-5-1 MTF受限於繞射極限 32 3-5-2 鏡片斜率 33 3-5-2 偏心公差 36 第四章 設計結果與分析 39 4-1 顯微物鏡設計結果 39 4-1-1物鏡鏡組資料 39 4-1-2初階設計結果 41 4-1-3MTF與Strehl ratio設計結果 41 4-2 顯微目鏡設計結果 43 4-2-1目鏡鏡組資料 43 4-2-2初階設計結果 45 4-2-3 MTF與Strehl ratio設計結果 45 4-3 顯微鏡系統設計結果 47 4-3-1顯微鏡鏡組資料 47 4-3-2初階設計結果 49 4-3-3 MTF與Strehl ratio設計結果 49 4-3-4橫向色差設計結果 52 4-3-5畸變設計結果 53 4-3-6相對照度設計結果 54 4-4手機相機設計結果 55 4-4-1相機鏡組資料 55 4-4-2初階設計結果 56 4-4-3 MTF設計結果 57 4-4-4橫向色差設計結果 59 4-4-5畸變設計結果 60 4-4-6相對照度設計結果 61 4-5 相機顯微鏡系統設計結果 62 4-5-1相機顯微鏡鏡組資料 62 4-5-2 MTF設計結果 64 4-5-3橫向色差設計結果 66 4-5-4畸變設計結果 67 4-5-5相對照度設計結果 68 4-6 公差容忍度分析 69 4-7 模仁加工角度確認 72 第五章 結論與未來展望 73 5-1 結論 73 5-2 未來展望 73 參考文獻 74

    [1] L. N. Andreev, "Creation of an optical element base for microscopes," Journal of Optical Technology 67, 368-370 (2000).
    [2] M. W. Davidson, and M. Abramowitz, "Optical microscopy," Encyclopedia of imaging science and technology (2002).
    [3] L. Schermelleh, R. Heintzmann, and H. Leonhardt, "A guide to super-resolution fluorescence microscopy," Journal of Cell Biology 190, 165-175 (2010).
    [4] S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimensional Systems and Signal Processing 17, 27-57 (2006).
    [5] A. M. H. Wong, and G. V. Eleftheriades, "An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit," Scientific Reports 3, 1715-1–1715-6 (2013).
    [6] F. C. Hsu, C. S. Lee, K. C. Huang, P. J. Chen, F. Z. Chen, and T. S. Liao, "Portable digital microscope apparatus," Review of Scientific Instruments 77, 116106-1–116106-2 (2006).
    [7] S. Schaefer, S. A. Boehm, and K. J. Chau, "Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilities," Applied Optics 51, 2581-2588 (2012).
    [8] S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, "Field-portable lensfree tomographic microscope," Lab on a Chip 11, 2222-2230 (2011).
    [9] A. Greenbaum, N. Akbari, A. Feizi, W. Luo, and A. Ozcan, "Field-Portable Pixel Super-Resolution Colour Microscope," Plos One 8, e76475-1–e76475-8 (2013).
    [10] A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, "Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope," Plos One 5, e11890-1–e11890-4 (2010).
    [11] K. Carlsson, and N. Åslund, "Confocal imaging for 3-D digital microscopy," Applied optics 26, 3232-3238 (1987).
    [12] R. Rizzuto, W. Carrington, and R. A. Tuft, "Digital imaging microscopy of living cells," Trends in Cell Biology 8, 288-292 (1998).
    [13] M. Dogar, H. A. Ilhan, and M. Ozcan, "Real-time, auto-focusing digital holographic microscope using graphics processors," Review of Scientific Instruments 84, 083704-1–083704-7 (2013).
    [14] J. C. Crocker, and D. G. Grier, "Methods of digital video microscopy for colloidal studies," Journal of Colloid and Interface Science 179, 298-310 (1996).
    [15] J. Wang, S. Zhai, and J. Canny, "Camera phone based motion sensing: interaction techniques, applications and performance study," in ACM UIST 2006, pp. 101-110 (2006).
    [16] F. Reynolds, "Camera phones: A snapshot of research and applications," IEEE Pervasive Computing 7, 16-19 (2008).
    [17] D. Omercevic, and A. Leonardis, "Hyperlinking reality via camera phones," Machine Vision and Applications 22, 521-534 (2011).
    [18] A. A. Ingraffea, "Innovative Use of a Polarized Magnifier and a Smart Phone: A Microscope in Your Pocket," Dermatologic Surgery 39, 796-796 (2013).
    [19] D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, "Lensfree microscopy on a cellphone," Lab on a Chip 10, 1787-1792 (2010).
    [20] W. M. Lee, A. Upadhya, and T. Phan, "Mobile microscopy on the move," in IS&T/SPIE Electronic Imaging(International Society for Optics and Photonics2014) 9023, 90230A-1–90230A -7 (2014).
    [21] D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, "Mobile Phone Based Clinical Microscopy for Global Health Applications," Plos One 4, e6320-1–e6320-7 (2009).
    [22] L. Abenavoli, "The mobile phone microscope: a new diagnostic tool?," Expert Review of Gastroenterology & Hepatology 7, 300-300 (2013).
    [23] Y. Granot, A. Ivorra, and B. Rubinsky, "A New Concept for Medical Imaging Centered on Cellular Phone Technology," Plos One 3, e2075-1–e2075-7 (2008).
    [24] B. Woodward, R. S. H. Istepanian, and C. I. Richards, "Design of a telemedicine system using a mobile telephone," IEEE Transactions on Information Technology in Biomedicine 5, 13-15 (2001).
    [25] S. Tachakra, X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Mobile e-health: The unwired evolution of telemedicine," Telemedicine Journal and E-Health 9, 247-257 (2003).
    [26] R. P. Braun, J. L. Vecchietti, L. Thomas, C. Prins, L. E. French, A. J. Gewirtzman, J. H. Saurat, and D. Salomon, "Telemedical wound care using a new generation of mobile telephones - A feasibility study," Archives of Dermatology 141, 254-258 (2005).
    [27] Eugene Hecht, "Optics," Fourth Edition, Addison Wesley, Chap.9, pp.211. (1998).
    [28] J. Smith Warren, "Modern Optical Engineering," Third Edition, The McGraw-Hill Companies, Inc., Chap.11 (2000).
    [29] W. S. Sun, C. L. Tien, C. C. Sun, M. W. Chang, and H. Chang, "Ophthalmic lens design with the optimization of the aspherical coefficients," Optical Engineering 39, 978-988 (2000).
    [30] J. Ren, B. Dai, and G. Xu, "Smoothing treatment of high order aspherical surface," in 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies(International Society for Optics and Photonics2009) 7282, 728212-1–728212-5 (2009).

    QR CODE
    :::