跳到主要內容

簡易檢索 / 詳目顯示

研究生: 普來都
Bagus Priambodo
論文名稱: 利用粒腺體基因(16S rRNA & ND4) 和細胞核基因(7IβFIB & 3ITBP) 研究亞洲蝮蛇在印尼地區的地理親緣演化
Phylogeography study of Asian pit vipers in Indonesia using mitochondrial genes (16S rRNA & ND4) and nuclear genes (7IβFIB & 3ITBP)
指導教授: 劉阜果
Fu-Guo Robert Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 59
中文關鍵詞: 亞洲蝮蛇粒腺體基因細胞核基因系統地理學Bayesian skyline plot
外文關鍵詞: Asian pit vipers, Mitochondrial genes, Nuclear genes, Phylogeography, Bayesian skyline plot
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用粒腺體基因(16S rRNA & ND4)和細胞核基因(7IβFIB & 3ITBP) 研究亞洲蝮蛇在印尼地區的地理親緣演化

    摘要
    印度尼西亞及其周邊地區的特殊地質歷史對其生物演化扮演重要的腳色,而亞洲蝮蛇的演化歷史也相對反映在這些地理變化上。亞洲蝮蛇廣泛的分佈在東南亞地區,包含印尼。在印尼地區,已確認有13種亞洲蝮蛇,但對其研究仍不完整,從保育的考量,其相關的基本資料是迫切需要的。因此本研究蒐集許多印尼的樣本,來評估牠們的地理親源演化關係,並預測牠們的族群大小。本研究在印尼採集了46個樣本,包含7種亞洲蝮蛇,利用16S rRNA、 ND4、 7IβFIB 和3ITBP基因序列,並蒐集genebank上公開的資料,共28種151筆亞洲蝮蛇的基因序列,用來進行地理親緣分析。親緣演化的推算主要使用maximum likelihood、maximum parsimony 和 bayesian inference;所得到的親緣關係能夠完整地區分物種,並有高度的可信度,5個屬均為單系群 (monophyletic group) (Trimeresurus、Parias、Popeia、Viridovipera和Cryptelytrops) 。在Trimeresurus屬形成了一個並系群(paraphyletic group)。本研究第一個提出T. andalasensis 與T. puniceus 為姊妹種。另一方面,我們發現認知的Cryptelytrops insularis 族群內可能有新種。亞洲蝮蛇最早的共同祖先大約在17.2百萬年前(中新世紀時代),大部分的屬在中新世時代分歧開來,這也可能顯示亞洲蝮蛇受溫度氣候和熱帶雨林植被的影響,而分化出多樣性。使用Bayesian skyline plot(BSP)分析亞洲蝮蛇3個屬共5種物種的實際種群大小,發現其中3種亞洲蝮蛇(C. purpureomaculatus, P. sabahi, 和 T. puniceus) 的種群規模從新世紀時代到中新世時代期間逐漸增大(溫暖氣候)。然而,種群規模在更新世(寒冷氣候)後有逐漸減小的趨勢。另外2種亞洲蝮蛇(C. albolabris 和 C. insularis) 種群規模則在更新世(寒冷氣候)擴張,這代表此兩種亞洲蝮蛇能高度適應寒冷氣候。因此,我們推測不同種亞洲蝮蛇種群大小會對氣候改變的改變也不相同。
    Keywords: 亞洲蝮蛇,粒腺體基因,細胞核基因,系統地理學,Bayesian skyline plot


    Phylogeography Study of Asian pit vipers in Indonesia using mitochondrial genes (16S rRNA & ND4) and nuclear genes (7IβFIB & 3ITBP)
    Abstract
    Unique geographical history of Indonesia and surrounding area played an important role in shaping of organism evolution. Evolutionary history of Asian pit vipers is relevant to those geography changes. Asian pit vipers widely distribute in Southern Asia, including Indonesia. There were total 13 known species of Asian pit vipers but not well studied in Indonesia. Their demographic information is required for conservational concerns. Hence, we collected more samples from Indonesia to evaluate the phylogeny and biogeography of Asian pit vipers, and to estimate their population size. This research involved 29 species of Asian pit vipers from Southeast Asia. We collected 46 samples consisting 7 species of Asian pit vipers from Indonesia. The DNA sequences of four genes, 16S rRNA, ND4, 7IβFIB & 3ITBP, were used to conduct the phylogeography analyses. Additional 151 sequences of the same four genes from 28 Asian pit vipers species were obtained from Genbank. The phylogenies are reconstructed using three different algorithms, maximum likelihood, maximum parsimony, and bayesian inference. Phylogenies based on these four genes were well-resolved with mostly high branch supports and formed 5 monophyletic groups, Trimeresurus clade, Parias clade, Popeia clade, Viridovipera clade, and Cryptelytrops clade. It was the first time to show in the phylogeny that T. andalasensis was a sister taxa to T. puniceus. On the other hand, we might recognize a new species within Cryptelytrops insularis. The most recent common ancestor of Asian pit viper diverged around 17.2 million years ago (Miocene). Most clades diversified during Miocene epoch, indicated that Asian pit vipers experienced the environment with predominantly warm climate and rainforest vegetation, thus this group had better chance to evolved. Bayesian skyline analyses (BSP) estimated the effective population size on 5 species which belonged to 3 genus of Asian pit vipers. 3 species, C. purpureomaculatus, P. sabahi, and T. puniceus showed slighlty increased and nearly constant during Miocene to Pliocene (warm climate), then at Pleistocene (cold climate) the population size were slightly decreased. The other 2 species, C. albolabris and C. insularis showed significant expansion, means they have strong adaptation at the cold period. Based on the BSP, we might suggested that the different species of Asian pit vipers might have different responses due to the climate changes.
    Keywords: Asian pit vipers, Mitochondrial genes, Nuclear genes, Phylogeography, Bayesian skyline plot

    Table of Contents 摘要 iii Abstract iv Aknowledments v Table of Contents vi List of Tables vii List of Figures viii Abbreviations ix 1. INTRODUCTION 1 1.1 Geographical history 1 1.2 Asian pit viper issues 2 1.3 Genes 3 2. MATERIALS AND METHODS 4 2.1 Sample collection 5 2.2 DNA extraction 5 2.3 PCR amplification 6 2.4 Gel electrophoresis and PCR Clean up 6 2.5 Sequence alignment 7 2.6 Phylogenetic tree reconstruction 7 2.7 Divergence time estimation 7 2.8 Population demography (Bayesian skyline plot) 8 3. RESULTS 9 3.1 DNA sequence characteristics 9 3.2 Genetic distances 9 3.3 Phylogeny of Asian pit vipers 9 3.4 Time divergence estimation 10 3.5 Bayesian skyline plot analysis 11 4. DISCUSSIONS 12 4.1 Phylogeny and Historical biogeography 13 4.2 Population demography 15 5. REFERENCES 16

    REFERENCES
    Alencar, L.R.V., Quental, T.B., Grazziotin, F.G., Alfaro, M.L., Martins, M., Venzon, Mericien, Zaher, H. 2016. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution 105: 50-62
    Arévalo, E., Jr., Jack W.S., Davis, Scott K. 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Systematic Biology 43: 387-418
    Bemmelen, R.W. 1949. The geology of Indonesia. Vol. IA: General Geology of Indonesia and Adjacent Archipelagoes.Matinus Nithoff The Hague 723
    Benson, D.A., Karsch-Mizrachi, I., Lipman,D.J., Ostell, J. Wheeler, D.L. 2005. GenBank. Nucleic Acids Res. 33: 34–38
    Bickford, D., Lohman, D. J., Sodhi N. S., Ng P. K. L., Meier R., Winker K., Ingram K. K., Das I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148–155
    Bintanja, R., Van de Wal, R.S.W. 2008. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454: 869–872
    Bird, M.I., Taylor, D., Hunt, C. 2005. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland?. Quaternary Science Reviews 24: 2228–2242
    Boon, N., Wind, W.D., Verstraete W., Top, E.M. 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-spesific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiology Ecology 39: 101-112
    Crawford, A. J., Lips, K. R., Bermingham, E. 2010. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc. Natl Acad. Sci. USA 107: 13777–13782
    Creer, S., Maholtra, A., Thorpe, R.S. 2003. Assessing the Phylogenetic Utility of Four Mitochondrial Genes and a Nuclear Intron in the Asian Pit Viper Genus, Trimeresurus : Separate, Simultaneous, and Conditional Data Combination Analyses. Mol Biol Evol. 20: 1240–1251
    Creer, S., Pook C.E., Maholtra, A., and Thorpe, R.S. 2006. Optimal intron analyses in the Trimeresurus radiation of Asian Pitvipers. Syst Biol. 55: 57-72
    Darlington, P. J. .1957. Zoogeography: the Geographical Distribution of Animals. John Wiley & Sons, Inc., New York.
    Darriba, D., Taboada G.L., Doallo, R., Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772
    David, P., Vidal, N., Pauwels, O. S. G. 2001. A morphological study of Stejneger's pitviper Trimeresurus stejnegeri (Serpentes, Viperidae, Crotalinae), with the description of a new species from Thailand. Russian J. Herpetol. 8: 205- 222
    David, P., Petri, M., Vogel, G., Doria, G. 2009. A new species of pitviper of the Genus Trimeresurus (Popeia) from northern Sumatra. (REPTILIA, SQUAMATA, VIPERIDAE). Annali del Museo Civico di Storia Naturale "G. Doria" 100: 323-346
    David, Patrick; Vogel, Gernot; Vijayakumar, S.P. Vidal, Nicolas. 2006. A revision of the Trimeresurus puniceus – complex (Serpentes: Viperidae: Crotalinae) based on morphological and molecular data. Zootaxa 1293:1-78
    de Lang, R. 2011. The snakes of the Lesser Sunda Islands (Nusa Tenggara), Indonesia. Asian Herpetological Research 2: 46-54.
    Dodson, J. J., Colombani, F., Ng, P. K. L. 1995. Phylogeographic structure in mitochondrial DNA of a South-east Asian freshwater fish, Hemibagrus nemurus (Siluroidei; Bagridae) and Pleistocene sea-level changes on the Sunda shelf. Molecular Ecology 4: 331-346
    Drummond, A.J., Suchard, M.A., Xie, D. Rambaut, A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7 Molecular Biology And Evolution 29: 1969-1973
    Funk, D.J., Omland, K.E. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34: 397–423.
    Gloyd, H.K., Conant, R., 1990. Snakes of the Agkistrodon Complex: A Monographic Review. Society for the Study of Amphibians and Reptiles. New York
    Greene, H.W., 1992. The ecological and behavioural context for pitviper evolution. In: Campbell, J.A., Brodie Jr., E.D. (Eds.), Biology of the Pitvipers. Selva, Tyler, Texas 107–117
    Grismer, L., Grismer, J. L., Mcguire, J. A. 2006. A new species of pitviper of the genus Popeia (Squamata: Viperidae) from Pulau Tioman, Pahang, West Malaysia. Zootaxa 1305:1–19
    Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307–321
    Guindon, S., Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696–704.
    Hall, Robert. 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. Biogeography and Geological Evolution of SE Asia 99-131
    Hall, Robert. 2009. Southeast Asia’s changing palaeogeography. Blumea 54: 148-161
    Haywood, A.M., Dowsett, H.J., Valdes, P.J., Lunt, D.J., Francis, J.E., Sellwood, B.W. 2009. Introduction. Pliocene climate, processes and problems. Philos. Trans. R. Soc. A. 367: 3–17
    Heaney, L.R. 1986. Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation. Biological Journal of the Linnean Society, 28, 127-165
    Heaney, L.R. 1991. A synopsis of climatic and vegetational change in Southeast Asia. Clim. Change 19:53–61
    Hewitt, G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Phylosophical Transactions of the Royal Society of London Series B: Biological Science 359: 183-195
    Hillis, D.M. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst. Biol. 47: 1-8
    How, R. A., Kitchener, D. J. 1997. Biogeography of Indonesian snakes. Journal of Biogeography 24: 725-735
    Huelsenbeck, J.P., Ronquist, F.R. 2001. MrBayes: Bayesian Inference of Phylogenetic Trees. Bioinformatics 17: 754-755
    Iskandar, D.T., Erdelen, W.R. 2006. Conservation of amphibians and reptiles in Indonesia: issues and problems. Amphibian and Reptile Conservation 4:60-87
    Jablonski, N.G. 1993. Quaternary environments and the evolution of primates in East Asia, with notes on two new specimens of fossil Cercopithecidae from China. Folia Primatol. 60: 118–132
    Kershaw, A.P., Van der Kaars, S., Flenley, JR. 2007. The Quaternary history of far eastern rainforests. In: Bush MB, Flenley JR (eds) Tropical rainforest responses to climate change. Springer, Berlin 77–115
    Kocher, T.D., Thomas, W.K., Meyer, A., Edwards S.V., Paabo, S., Villablanca, F.X., Wilson, A.C. 1989. Dynamics of mitochondrial DNA Evolution in animals: Amplification and sequencing with conserved primers. Proc. Nati. Acad. Sci. USA 86: 6196-6200
    Kornfield, I., Carpenter, K.E.. 1984. The cyprinids of Lake Lanao, Philippines: taxonomic validity, evolutionary rates and speciation scenarios. In: A.A.Echelle & I. Kornfiled (eds), Evolution of fish species flocks. Oklahoma State University press
    Leviton, A.E. 1964. Contributions to a review of Philippine snakes. V. The snakes of the genus Trimeresurus. Philippine J. Sci. 93: 251-276
    Louys, J. 2007. Limited effect of the Quaternary’s largest super-eruption (Toba) on land mammals from Southeast Asia. Quaternary Science Reviews 26: 3108–3117.
    Maholtra, A., Creer, S., Pook, C.E., Thorpe, R.S. 2010. Inclusion of nuclear intron sequence data helps to identify the Asian sister group of New World pitvipers. Mol. Phylo. & Evol. 54: 172–178
    Maholtra, A., Thorpe R.S. 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers (Trimeresurus and Ovophis). Molecular Phylogenetics and Evolution 32: 83–100
    Maholtra, A., Thorpe, R.S. 2000. A phylogeny of the Trimeresurus group if pit vipers: new evidence from a mitochondrial gene tree. Molecular phylogenetics and evolution 16: 199-211
    Marlon, Riza. 2014. Panduan visual dan Identifikasi Lapangan: 107+ Ular Indonesia. Indonesia Nature and Wildlife Publising
    Menegon, Michele, 2007 - Methods for surveying and processing reptiles and amphibians of Alpine springs. In: Cantonati M., Bertuzzi E. & Spitale D., The spring habitat: biota and sampling methods. Museo Tridentino di Scienze Naturali, Trento 275-285
    Mittermeier, R.A., Myers N., Mittermeier, C. G. 1999. Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. Cemex. Conservation International and Agrupacion Sierra Madre. 431 pp
    Molengraaff, G., Weber, M. 1921. On the relation between the Pleistocene glacial period and the origin of the Sunda Sea (Java and South China-Sea), and its influence on the distribution of coral reefs and on the land and freshwater fauna. Proc. R. Acad. Amsterdam 23: 395–439.
    Morley, R. J., Flenley, J. R. 1987. Late Cainozoic vegetational and environmental changes in the Malay archipelago. Biogeographical Evolution of the Malay Archipelago (ed. by T. C. Whitmore) Clarendon Press, Oxford pp. 50-59
    Morley, R.J. 2000. Origin and Evolution of Tropical Rain Forests. Chichester, UK: John Wiley & Sons. 362 pp
    Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858
    Nakashima, K., Nobuhisa, I., Deshimaru, M., Ogawa, T., Shimohigashi, Y., Fukumaki, Y., Hattori, M., Sakaki, Y., Hattori, S., Ohno, M. 1995. Structures of genes encoding TATA box-binding proteins from Trimeresurus gramineus and T. flavoviridis snakes. Gene 152: 209–213.
    Parkinson, Christoper L. 1999. Molecular systematic and biogeographical history of Pitvipers as determined by mitochondrial ribosomal DNA sequences. Copeia 576-586
    Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637–669
    Patterson, J., Chamberlain, B., Thayer, D. 2006. Finch TV Version 1.4.0. Retrieved from http://www.geospiza.com/Products/finchtv.shtml
    Priambodo, B., Kurniawan, N. Liu, F.G. 2017. Phylogeography study of Trimeresurus (Squamata;Viperidae) in Indonesia. Poster at National Health Research Institute conference
    Prychitko, T. M., Moore, W. S. 1997. The utility of DNA sequences of an intron from the ß-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves:Picidae). Mol. Phyl. Evol. 8: 193–204
    Rambaut, A. 2012. FigTree v1.4.0. A graphical viewer of phylogenetic trees. Institute of Evolutionary Biology University of Edinburgh. Retrieved from http://scholar.google.pl/scholar?q=Rambaut,+A.+FigTree+v1.4.0.&btnG=&hl=en&as_sdt=0,5#0
    Rambaut, A., Suchard, M.A., Xie D., Drummond, A.J. 2014. Tracer v1.6. Institute of Evolutionary Biology, University of Edinburgh.
    Sanders, K. L., A. Malhotra, R. S. Thorpe. 2006. Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal of the Linnean Society 87:343–364
    Simon, C., Buckley, T.R., Frati, F., Stewart, J.B., Beckenbach, A.T. 2006. Incorporating moleculer evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 37: 545–79
    Sodhi, N.S., Koh, L.P., Brook, B.W., NG P.K.L. 2004. Southeast Asia biodiversity: an impending disaster. Review in TRENDS in Ecology and Evolution 19
    Sosdian, S., Rosenthal, Y. 2009. Deep-sea temperature and ice volume changes across the Pliocene Pleistocene climate transitions. Science 325: 306–310
    Swofford, D. L. 1998. PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0. Sinauer Associates, Sunderland, Massachusests
    Tjia, H. D. 2001. Sundaland. In O. J. Eong & G. W. Khoon (Eds.), The Encyclopedia of Malaysia. The Sea. Archipelago Press, Singapore. pp. 32–33
    Viktigpetter. 2006. Trimeresurus puniceus. Retrieved from https://www.flickr.com/photos/63513961@N00/5105814488/in/photostream/
    Vogel, G., P. David, Pauwels, O. S. G.. 2004. A review of morphological variation in Trimeresurus popeiorum (Serpentes: Viperidae: Crotalinae), with the description of two new species. Zootaxa 727:1–63.
    Voris, H.K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1152-1167
    Wallace, A. R. .1881. Island life or the phenomena and causes of insular faunas and floras including a-revision and attempted solution of the problem of geological climates. Macmillan, London.
    Wallach, V., Kenneth, L., Jeff, B. 2014. Snakes of the World: A Catalogue of Living and Extinct Species. Taylor and Francis, CRC Press
    Wiens, J.J., Hollingsworth, B.D., 2000. War of the iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst. Biol. 49: 143–159.
    Wilting, A., Sollmann, R., Meijaard, E., Helgen, K.M., Fickel, J. 2012. Mentawai’s Endemic, Relictual Amphibian: Is It Evidence for Pleistocene Extinctions on Sumatra. Journal of Biogeography 39: 1608-1620.
    Woodruff, D. S. 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation 19: 919– 941.
    Wostl, E., Sidik, I., Trilaksono W., Shaney, K.J., Kurniawan, N., Smith, E.N. 2016. Taxonomic status of the Sumatran Pitviper Trimeresurus (Popeia) toba David, Petri, Vogel & Doria, 2009 (Squamata: Viperidae) and other Sunda Shelf species of the Subgenus Popeia. Journal of Herpetology 50: 633–641
    Zheng, Z., Lei, Z.Q. 1999. A 400,000 year record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, Southern China. Palaeogeography, Palaeoclimatology, Palaeoecology 145: 339–362.
    Zhu, F., Liu, Q., Che, J., Zhang, L., Chen, X., Yan, F., Murphy, R., Guo, C., Guo, P. 2016. Molecular phylogeography of white-lipped tree viper (Trimeresurus; Viperidae). Zoologica Scripta 45: 252–262

    QR CODE
    :::