| 研究生: |
柯灝亮 Hao-Liang Ke |
|---|---|
| 論文名稱: |
四方晶格與Bessel分布之環狀波導研究 Study of Torus Photonic Crystal Waveguides in Square Lattice and Bessel Structure |
| 指導教授: |
陳啟昌
Chii-Chang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 無線電力傳輸 、波導 、太陽能衛星系統 、微波電力傳輸 |
| 外文關鍵詞: | Wireless Power Transmission, Waveguide, Solar Power Satellite System, Microwave Power Transmission |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在設計一種應用於太陽能無線電力傳輸系統中的環狀波導結構,以降低光束在自由空間中的擴散角,並提升傳輸效率。以圓柱座標下的有限時域差分法進行模擬分析。本研究針對不同的參數條件進行優化與性能比較,以找出最佳化的波導設計。模擬中比較了四方晶格與Bessel分布兩種不同的結構排列方式。結果顯示,在最佳參數條件下,四方晶格排列波導的傳輸效率為11.85%,其在E_φ與E_r平面中的半擴散角分別為1.70°與1.46°;而Bessel排列波導的最佳傳輸效率則為22.76%,其半擴散角分別為2.06°與1.19°。進一步在9.7 GHz頻率下,估算其結構體積,四方晶格排列約為0.44m^3,Bessel排列為1.41m^3,展現出高效能與小型化兼具的設計潛力。研究結果指出,透過適當設計的環狀波導結構,可有效抑制光束發散,並提升能量傳輸效率。該結構提供一種不同於傳統矩陣式或碟型天線的新型解決方案,具有潛力應用於未來的無線電力傳輸系統中。
This paper aims to design a torus photonic crystal waveguide structure for application in space-based solar wireless power transmission systems, with the goal of reducing beam divergence in free space and enhancing transmission efficiency. The simulation and analysis are conducted using a finite-difference time-domain method in cylindrical coordinates. In this study, different parameter settings are tested and compared to find the best-performing waveguide design. Two types of structural arrangements are examined: square-lattice and Bessel structure. The results show that the square-lattice waveguide reaches a transmission efficiency of 11.85%, with half divergence angles of 1.70° and 1.46° in the E_φ and E_r planes. The Bessel structure waveguide achieves a higher efficiency of 22.76%, with half divergence angles of 2.06° and 1.19°. Under the operating frequency of 9.7 GHz, the corresponding structural volumes of the square-lattice and Bessel configurations are estimated to be approximately 0.44m^3 and 1.41m^3. These results demonstrate the feasibility of achieving compact volume and high performance simultaneously.
The results indicate that a well-designed torus waveguide can effectively reduce beam spreading and increase energy transmission efficiency. This design offers a new solution, different from traditional array or parabolic antenna systems, and shows promise for future wireless power transmission applications.
參考文獻
1. Siegel, R.S. and P.H. Siegel, Making Waves: Microwaves in Climate Change. IEEE Journal of Microwaves, 2023. 3(3): p. 863-880.
2. Glaser, P.E., Power from the Sun: Its Future. Science, 1968. 162(3856): p. 857-861.
3. Tsai, Y.L., et al., Optical confinement using a doughnut waveguide. Journal of Physics D: Applied Physics, 2010. 43(24).
4. Alam, K.S., et al., Towards net zero: A technological review on the potential of space-based solar power and wireless power transmission. Heliyon, 2024. 10(9): p. e29996.
5. Energy, N.a.U.S.D.o., Satellite Power System: Concept Development and Evaluation Program, Reference System Report. 1979, U.S. Government Printing Office: Washington.
6. McSpadden, J.O. and J.C. Mankins, Space solar power programs and microwave wireless power transmission technology. IEEE Microwave Magazine, 2002. 3(4): p. 46-57.
7. Mankins, J.C., A fresh look at space solar power: New architectures, concepts and technologies. Acta Astronautica, 1997. 41(4): p. 347-359.
8. Mankins, J. and J. Howell, Overview of the space solar power (SSP) Exploratory Research And Technology (SERT) program. 2000.
9. Mankins, J., N. Kaya, and M. Vasile, SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array (A 2011-2012 NIAC Project). 2012.
10. Ayling, A., et al., Wireless power transfer in space using flexible, lightweight, coherent arrays. Acta Astronautica, 2024. 224: p. 226-243.
11. Mori, M., H. Kagawa, and Y. Saito, Summary of studies on space solar power systems of Japan Aerospace Exploration Agency (JAXA). Acta Astronautica, 2006. 59(1): p. 132-138.
12. Shinohara, N. and S. Kawasaki. Recent Wireless Power Transmission technologies in Japan for space solar power station/satellite. in 2009 IEEE Radio and Wireless Symposium. 2009.
13. Sasaki, S. and K. Tanaka. Wireless power transmission technologies for solar power satellite. in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications. 2011.
14. Sasaki, S., K. Tanaka, and K.i. Maki, Microwave Power Transmission Technologies for Solar Power Satellites. Proceedings of the IEEE, 2013. 101(6): p. 1438-1447.
15. (JAXA), J.A.E.A. Ground demonstration testing of microwave wireless power transmission. 2015 2025-05-24]; Available from: https://www.kenkai.jaxa.jp/eng/research/ssps/150301.html.
16. (JAXA), a.A.E.A., JAXA Activities for SSPS Research – Space Dream 2030. 2015, JAXA: Tokyo, Japan.
17. (ESA), E.S.A. Space-Based Solar Power overview. 2022 2025-05-24]; Available from: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/SOLARIS/Space-Based_Solar_Power_overview.
18. CGTN. China aims to construct first Space Solar Power Station in 2028. 2022 2025-05-24]; Available from: https://news.cgtn.com/news/2022-06-22/China-aims-to-construct-first-Space-Solar-Power-Station-in-2028-1b49ktMx5W8/index.html.
19. Shinohara, N., Wireless Power Transfer via Radiowaves. 2014, Hoboken, NJ, USA: Wiley.
20. Sun, L., et al., Design and Efficiency Optimization of Distributed Laser Wireless Power Transmission Systems Through Centralized Scheduling and Current Regulation. Photonics, 2025. 12(1): p. 30.
21. Garcia, I., et al., Photovoltaic laser power converters producing 21 W/cm2 at a conversion efficiency of 66.5%. Cell Reports Physical Science, 2024. 5: p. 102263.
22. Yang, B., et al., A 5.8-GHz Phased Array System Using Power-Variable Phase-Controlled Magnetrons for Wireless Power Transfer. IEEE Transactions on Microwave Theory and Techniques, 2020. 68(11): p. 4951-4959.
23. Rodenbeck, C.T., et al., Terrestrial Microwave Power Beaming. IEEE Journal of Microwaves, 2022. 2(1): p. 28-43.
24. Durnin, J., Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, 1987. 4(4): p. 651-654.
25. Khonina, S.N., et al., Bessel Beam: Significance and Applications—A Progressive Review. Micromachines, 2020. 11(11): p. 997.
26. Herman, R.M. and T.A. Wiggins, Production and uses of diffractionless beams. Journal of the Optical Society of America A, 1991. 8(6): p. 932-942.
27. Tsai, Y.-L., et al., Donuts make diffractionless electromagnetic waves. Photonics and Nanostructures - Fundamentals and Applications, 2012. 10(1): p. 9-15.
28. Kulu, E., Space Solar Power - 2023 Survey of Public and Private Initiatives. 2023.
29. Koot, M. and F. Wijnhoven, Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 2021. 291: p. 116798.
30. Liu, Z., et al., Geopolitical risk and vulnerability of energy markets. Energy Economics, 2025. 141: p. 108055.
31. Raman, A., et al., Enhancing net zero decarbonization strategies: a comparative analysis with the analytic hierarchy process. International Journal of Low-Carbon Technologies, 2025. 20: p. 508-518.
32. Marin, P., et al., From limit values to carbon budgets: Assessing comprehensive building stock decarbonisation strategies. Building and Environment, 2024. 256: p. 111505.
33. Kane, Y., Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966. 14(3): p. 302-307.
34. Dib, N., et al., Analysis of cylindrical transmission lines with the finite-difference time-domain method. Microwave Theory and Techniques, IEEE Transactions on, 1999. 47: p. 509-512.
35. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990, 1990: p. 1-84.
36. Kasap, S.O., Optoelectronics and Photonics: Principles and Practices. 2nd Edition ed. 2013, Boston, MA: Pearson.