| 研究生: |
林哲民 Che-Min Lin |
|---|---|
| 論文名稱: |
利用接收函數法推估蘭陽平原淺層速度構造 Shallow Structure Beneath Lan-Yang Plain Using High-frequency Receiver Function Technique |
| 指導教授: |
溫國樑
Kuo-Liang Wen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球物理研究所 Graduate Institue of Geophysics |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 宜蘭 、接收函數 、剪力波速度構造 、蘭陽平原 |
| 外文關鍵詞: | Ilan, receiver function, shear-velocity structure, Lan-Yang plain |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用廣泛利用於地殼、地函剪力波速度構造研究之接收函數法,對TSMIP測站的高頻資料加以分析,嘗試探求淺部數公里內之速度構造,並對此方法之相關參數加以測試及探討,將之利用於地震測站密集且地震頻繁之蘭陽平原上,以求取各測站下之一維剪力波速度構造,進而推估其速度構造形貌。各測站之接收函數波形明顯隨震源方位角變化,強烈地顯示測站下傾斜構造的存在;且各波相之振幅變化所反應之速度介面,並非只是單純的傾斜平面,而是更為複雜之側向非均質構造。從各測站之剪力波速度構造結果中,可清楚的發現表土層、現世沖積層、更新世地層及基盤的存在及分佈變化。蘭陽平原下之更新統與基盤界面深度在平原邊緣最淺,往平原中央漸漸變深,並在壯圍海邊之深度最深;宜蘭市、羅東東邊之基盤深度呈凹槽狀分佈,而ILA016、018測站附近也可能存在這樣的基盤變化;而沈積層與更新統之界面深度變化範圍在100至400公尺之間,其趨勢與基盤面深度同樣從平原邊緣往海邊變深,但其深度變化梯度明顯較基盤面為緩,且構造變化簡單。此種高頻震波資料之接收函數研究,的確可正確推估測站下之淺層剪力波速度構造,尤其測站密集分佈之區域,可清楚的解析該區域之速度構造變化,進而描繪地下之可能形貌。
In this study, we calculated the shallow shear-velocity structures of Ilan basin by applying the receiver function technique on the acceleration seismograms recorded by TSMIP stations. We have also tested the suitability of this receiver function technique on the high frequency data.
From the variations of receiver function waveform with respect to azimuth, we concluded that the structure beneath the stations are very different, such as a dipping plane or large lateral velocity heterogeneity. We can also relate our velocity structure results to the common geology such as topsoil, alluvium, Pleistocene and basement rocks. The depths of the basement rock become very shallow near the edge of plain. And the depths become deeper toward the center of plain and toward the sea. However, the interface become concave near Ilan and Lotung city, and the interface beneath ILA016 and ILA018 has similar variation. The thickness of the alluvium vary between 100 to 400 meters and has a similar trend like the basement, but the surface gradient of depth is smaller, and the structure is simpler.
Ammon, C. J., G. E. Randall and G. Zandt, 1990. On the non-uniqueness of receiver function inversions, J. Geophys. Res., 95, 15303-15318.
Ammon, C. J., 1991. The isolation of receiver effects from teleseismic P waveforms, Bull. Seism. Soc. Am., 81, 2504-2510.
Burdick, L. J., and C. A. Langston, 1977. Modeling crustal structure through the use of converted phases in teleseismic body-wave forms, Bull. Seism. Soc. Am., 67, 677-691.
Cassidy, J. F., 1992. Numerical experiments in broadband receiver function analysis, Bull. Seism. Soc. Am., 82, 1453-1474.
Kennett, B. L. N., 1983. Seismic wave propagation in stratified media, Cambridge University Press, 342pp.
Langston, C. A., 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter, Bull. Seism. Soc. Am., 67, 1029-1050.
Langston, C. A., 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749-4762.
Liu, C. C., 1995. The Ilan plain and the southwestward extending Okinawa Trough, J. Geol. Soc. China, 38, 229-242.
Ma, K.F., and Song, D,R, 1997. Pn velocity and moho depth in Taiwan, J. Geol. Soc. China, 40, 167-184.
Owens, T. J., G. Zandt, and S. R. Taylor, 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res., 89, 7783-7795.
Owens, T. J., 1987. Crustal structure of the Adirondacks determined from broadband teleseismic waveform modeling, J. Geophys. Res., 92, 6391-6401.
Owens, T. J., and R. S. Crosson, 1988a. Shallow structure effects effects on broadband teleseismic P waveforms, Bull. Seism. Soc. Am., 78, 96-108.
Owens, T. J., R. S. Crosson, and M. A. Hendrickson, 1988b. Constraints on the subduction geometry beneath western Washington from broadband teleseismic waveform modeling, Bull. Seism. Soc. Am., 78, 1318-1334.
Ru, R. J., and F. T. Wu, 1995. Tomographic imaging of lithospheric, structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532.
Phinney, R. A., 1964. Structure of the Earth''s crust from spectral behaviour of long-period body waves, J. Geophys. Res., 69, 2997-3017.
Tomfohrde, D. A. and R. L. Nowack, 2000. Crustal structure beneath Taiwan using frequency-band inversion of receiver function waveform, Pure Appl. Geophy., 157, 737-764.
Tsai, Y. B., and C. C. Feng, 1975. Correlation between microearthquakes and geologic faults in the Hsintien-Ilan area, Petrol. Geol. Taiwan, 12, 149-167.
Wen, K. L., Y. T. Yen, 1984. Seismic velocity beneath the SMART-1 array, Bull. Inst. Earth. Sci. Scad. Sinica, 4, 51-72.
Yu, S. B. and Y. B. Tsai, 1979. Geomagnetic anomalies of the Ilan plain, Taiwan, Petrol. Geol. Taiwan, 16, 19-27.
Yeh, Y. H., C. H. Lin, and S. W. Roecker, 1989. A study of upper crustal structures beneath northeastern Taiwan: possible evidence of the western extension of Okinawa trough, Proc. Geol. Soc. China, 32, 139-156.
江新春,1976. 宜蘭平原之震測,礦業技術,14, 215-221.
林豐銘,1993. 人控音頻大地電磁法應用於宜蘭平原之研究,國立中央大學地球物理研究所碩士論文,88頁。
陳燕玲,1995. 台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,172頁。
郭隆晨,余水倍,1994. 宜蘭平原之伸張變形,第五屆談灣地區地球物理研討會論文集,633-641頁。
黃文紀,1986. 羅東強震儀陣列區微地動之來源與特性,國立中央大學地球物理研究所碩士論文,101頁。
黃有志,2003. 蘭陽平原場址效應及淺層S波速度構造,國立中央大學地球物理研究所碩士論文。
劉坤松、辛在勤、李汯鑑、蔡義本,1993. 中央氣象局強地動觀測計畫-基本自由場強震儀之比較,中央氣象局氣象學報,第39卷,第三期。
蔡義本,1976. 宜蘭地區之地震研究,礦業技術,14, 154-161.
饒瑞鈞,1996. 3-D seismic tomography, focal mechanisms, and Taiwan orogeny, State University of New York.
蘇敬怡,2000. 利用S波與尾波探求蘭陽平原局部場址效應,國立中央大學地球物理研究所碩士論文,81頁。