跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅偉誠
Wei-Cheng LUO
論文名稱: 量子點奈米線製作的熱二極體
Heat diodes made of quantum dot nanowires
指導教授: 郭明庭
Ming-Ting KUO
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 40
中文關鍵詞: 量子點奈米線熱二極體
外文關鍵詞: quantum dot nanowires, heat diodes
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討非線性量子點奈米線系統之熱二極體特性分析。我們證實了非線性席貝克效應可以對階梯能階的量子點奈米線有電子熱整流效應,控制量子點奈米線系統的非對稱能階,我們可以在順偏時使得通道傾向共振狀態,反言之,逆偏時則會使通道傾向非共振狀態。一旦我們把聲子熱流考慮進來,會使得整體熱整流比率下降十倍左右。我們發現到熱整流比率可以在考慮矽的能階簡併態時有著顯著提升。除此之外,我們也在非線性量子點奈米線發現負微分熱導的現象,此現象有利應用在熱電邏輯電路以及熱電電晶體上,這對熱電發展是一個重要關鍵。未來,如果我們能夠有效的隔絕聲子,並且所花費的材料成本也夠低,那麼熱電元件會是我們能夠寄望的新元件。


    This thesis investigates the nonlinear electron heat transport in quantum dots embedded in nanowires connected to metallic electrodes. It is demonstrated that the nonlinear Seebeck effect can lead to significant electron heat rectification for such a wire with staircase-like energy levels. The asymmetrical alignment of energy levels of QDNWs can be controlled to allow resonant electron transport under forward temperature bias, while they are in off-resonant regime under backward bias. Once taking into account the presence of phonon heat flows, the efficiency of electron heat rectification is suppressed. We find that R will be enhanced by taking advantage of the multi-valley degeneracy of the silicon QD. In addition to this, the behavior of the negative differential thermal conductance is a key ingredient for the implementation of thermal logical gates and transistors..

    目錄 第一章、 導論 1 1-1 : 前言 1 1-2 : 熱二極體及熱整流特性 2 1-3 : 文獻回顧 3 1-4 : 研究動機 4 第二章、 系統模型與公式推導 5 2-1 : 系統模型 5 2-2 : 電子流與電子熱流 8 2-3 : 電子傳輸係數 10 2-4 : 聲子熱流 11 第三章、 優化熱二極體系統的特性與分析 13 3-1 : 前言 13 3-2 : 系統溫差對電子熱流與熱電壓影響 14 3-3 : 系統平衡溫度對聲子熱流與熱整流比率影響 18 3-4 : 在考慮能階簡併態下系統溫差對電子熱流與熱整流比率影響 19 3-5 : 量子點能階差對熱整流比率之影響 21 3-6 : 負的微分熱導 22 3-7 : 熱激發輔助穿隧對電子熱導的影響 24 第四章、 結論 26 參考文獻 27

    參考文獻
    [1] M. Terraneo, M. Peyrard, and G. Casati,”Controlling the energy flow in Nonlinear lattices: A model for a thermal rectifier,” Phys. Rev. Lett. 88, p094302 ,(2002). [2] B. W. Li, L. Wang, and G. Casati,”Thermal diode: Rectification of heat flux,” Phys. Rev. Lett. 93, p184301, (2004).
    [3] J. H. Lan and B. W. Li, ”Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 74, p214305, (2006).
    [4] S. Pal and I. K. Puri, ”Thermal rectification in a polymer-functionalized single-wall carbon nanotube,” Nanotechnology 25, p8, (2014).
    [5] X. Cartoixa, L. Colombo, and R. Rurali,”Thermal Rectification by Design in Telescopic Si Nanowires,” Nano Lett. 15, p8255, (2015).
    [6] Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P. Huang, ”Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes,” Phys. Rev. Lett. 115, p195503, (2015).
    [7] C. L. Chiu, C. H. Wu, B. W. Huang, C. Y. Chien and C. W. Chang, ”Detecting thermal rectification,”AIP ADVANCES 6, p121901, (2016).
    [8] C. R. Otey, W. T. Lau, and S. H. Fan,”Thermal Rectification through Vacuum,” Phys. Rev. Lett. 104, p154301, (2010).
    [9] D. M.-T. Kuo and Y. C. Chang,”Thermoelectric and thermal rectification properties of quantum dot junctions,” Phys. Rev. B 81, p205321, (2010).
    [10] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor”, Appl. Phys. Lett. 88, 143501 (2006).
    [11] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys. Rev. Lett. 99, 177208 (2007).
    [12] C. Starr, “The Copper Oxide Rectifier”, J. Appl. Phys. 7, 15 (1936).
    [13] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121 (2006).
    [14] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi,”Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, p253503, (2014).
    [15] M. J. Martinez-Perez, A. Fornieri, and F. Giazotto,”Rectification of electronic heat current by a hybrid thermal diode,” Nature Nanotech. 10, p303, (2015).
    [16] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors”, (Springer, Heidelberg, 1996).
    [17] D. M. T. Kuo and Y. C. Chang,”Thermoelectric properties of a quantum dot array connected to metallic electrodes,” Nanotechnology 24, p175403, (2013).
    [18] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008). [19] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415 (2011).
    [20] Ming Hu and Dimos Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity”, Nano Lett. 12, 5487 (2012).
    [21] D. M. T. Kuo, C. C. Chen, and Y. C. Chang, “Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy”, Phys. Rev. B 95, 075432 (2017).
    [22] W. Lu, J. Xiang, B. P. Timko, Y. Wu, C. M. Lieber,”One-dimensional hole gas in germanium/silicon nanowire heterostructures,” Proc. Natl. Acad. Sci. U.S. A. 102, p10046, (2005).
    [23] D. M. T. Kuo, “Heat diodes made of quantum dots embedded in nanowires connected to metallic electrodes” arXiv preprint arXiv:1706.06677, (2017)
    [24] D. H. He, S. Buyukdagli and B. Hu, Phys. Rev. B 80, 104302 (2009). [25] L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).

    QR CODE
    :::