| 研究生: |
陳雅文 Ya-Wen Chen |
|---|---|
| 論文名稱: |
低放射性最終處置場障壁混凝土以熱養護提升品質之研究 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 氯離子擴散 、服務年限 、熱養護 、表面電阻率 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
延續先前研究團隊針對可能低放射性廢棄物盛裝容器混凝土配比HIC-C、HIC-M之氯離子長期浸泡試驗(改自AASHTO T259)及配比C、配比M之氯離子浸泡試驗(ASTM C1556)分別增加第七年及第三年之實驗數據,利用長時間之實驗結果探討擴散係數發展趨勢以及推估更準確之服務年限。以最保守估計盛裝容器於製作完成後立即受氯離子入侵,推估於容器厚度一半(35mm)深度於500年後之氯離子含量仍低於腐蝕門檻值0.05%,表示盛裝容器混凝土配比之服務年限超過500年。
低放射性最終處置工程障壁混凝土以安全性為首要要求,為了探討是否有其他方法能使其品質再提升,故本研究藉由熱養護方式分別採用80℃熱水養護三天及四天進行一系列試驗,與23℃常溫養護進行比較。結果顯示經80℃熱養護3天及4天後,能加速混凝土水化反應減少試體內部孔隙,相較於常溫養護試體其試體內部較為緻密,故在品質提昇方面有明顯的效果。
由表面電阻率與混凝土、水泥漿體孔隙率試驗結果發現,電阻率與兩個試驗之間有良好相關性,表示以表面電阻率評估本研究配比混凝土品質應為可行的,而與抗壓強度因試驗機理不同所產生之相關性較差,故不建議以電阻率評估混凝土之抗壓強度。
Safety is the most important consideration in the development of concrete mix for containment of low-level radioactive wastes. So this study intends to find methods to improve the durability of the concrete mix by thermal curing in 80°C hot water for 3 or 4 days. To evaluate the effectiveness of the improvement by thermal curing of the concrete mixes, the chloride ion diffusion, mechanical, durability and non-destructive test results were compared with those cured at room temperature of 23°C. It was found that heat curing can speed up the pozzolanic reaction and accelerate cement hydration so as to fill the pores in the concrete and produce a denser structure. Compared with room temperature curing, heat curing can effectively improve the concrete quality.
Continuing the long-term study on chloride ion penetration measurements of the potential mixes (HIC-C, HIC-M) to be used for highly integrated containers (HIC), the seventh year’s profile was determined and the time factor for diffusion re-evaluated using updated data. And the instantaneous chloride diffusion coefficient of mix C and M was determined for 3-year’s specimens. Based on long-term measurements on the concrete mixes, a more reliable estimation on the service life of HIC was made possible.
Surface resistivity and porosity test results on concrete mixes C and M show that there is a good correlation between the two tests. Since the durability of concrete is known to be highly influenced by the porosity and pore size distribution. The surface resistivity measurement is found to be feasible method for estimating the durability of barrier concrete.
台灣電力公司:http://www.taipower.com.tw/
行政院原子能委員會:http://www.aec.gov.tw/
經濟部低放射性廢棄物最終處置:http://www.llwfd.org.tw/index.aspx
王茂齡(1987),輸送現象,高立圖書有限公司。
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2012)。
牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,中壢(2014)。
彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
吳桂卿,「不同養護溫度條件對提升障壁混凝土品質之成效」,碩士論文,國立中央大學土木工程研究所,中壢(2016)。
廖文佑,「低放射性廢棄物盛裝容器混凝土品質檢測之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2017)。
AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
AASHTO T358-15 Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.
Ann, K.Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures.” Construction and Building Materials, Vol. 23, pp. 239- 245.
ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
Bai, J., Wild, S., and Sabir, B. B. (2003). “Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater.” Cement and Concrete Research, Vol. 33, pp. 353-362.
BS EN 12390-8 Depth of penetration of water under pressure.
Chalee, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009). “Predicting the chloride penetration of fly ash concrete in seawater.” Marine structures, Vol. 22, No.1, pp. 341-353.
DataFit (URL):http://www.curvefitting.com/.
Frazao, C., Camoes, A., Barros, J., and Goncalves, D.(2015). “Durability of steel fiber reinforced self-compacting concrete.” Construction and Building Materials, Vol. 80, pp. 155-166.
Gettu, R.(2005). “Study of the distribution: and orientation of fibers in SFRC specimens. ” Materials and Structures, pp. 31-37.
Leng, F., Feng, N., and Lu, X. (2000). “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete.” Cement and Concrete Research, Vol. 30, pp. 989-992.
Life-365 (URL):http://www.life-365.org/.
“Life_-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
Mangat, P.S., and Molloy, B.T. (1994). “Prediction of long-term chloride concentration in concrete.” Material and structures, Vol. 27, pp. 338-346.
Morris, W., Moreno, E.I., and SagiiCs, A.A.(1996). “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787.
Nokken, M., Boddy, A., Hooton, R.D., and Thomas, M.D.A. (2006). “Time dependent diffusion in concrete−three laboratory studies.” Cement and concrete research, Vol. 36, No. 1, pp. 200-207.
Sengul, O.(2014). “Use of electrical resistivity as an indicator for durability”, Construction and Building Materials, Pages 434–441.
Polder, R.B. (2001). “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
Gettu, R., Gardner D.R., Saldivar H., and Barragfin B.E.(2005). “Study of the distribution :and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
Ramezanianpour, A.A., Pilvar, A., Mahdikhani, M., and Moodi, F. (2011). “ Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength”, Construction and Building Materials, Vol. 25, pp. 2472–2479.
Safiuddin, Md., and Hearn, N.(2005). “Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete” Cement and Concrete Research, Vol. 35, pp1008-1013.
Sherman, R.M., David, M.B., and Pfeifer, D.W. (1996). “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Song, H.W., Lee, C.H., and Ann, K.Y. (2008). “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and concrete composites, Vol. 30, pp. 113-121.
Stanish, K., Thomas, M. (2003). “The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients.” Cement and concrete research, Vol. 33, pp. 55-62.
Jussara, T., Ardani, A. (2012). “Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete”, Federal Highway Administration.
Young, J.F., Mindess, S., and Darwin, D. (2002). Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., and Nieto, P. (1996). “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and concrete research, Vol. 26, pp. 93-100.