跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅心怡
Hsin-Yi Lo
論文名稱: 探討添加界面活性劑Tween 80 對Penicillium brevicompactum 在液態發酵中生產Mycophenolic acid 之影響
Effects of surfactant Tween 80 on the production of Mycophenolic acid by Penicillium brevicompactum in batch culture
指導教授: 徐敬衡
Chin-hang Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 青黴菌麥考酚酸界面活性劑
外文關鍵詞: Mycophenolic acid, Tween 80, Penicillium brevicompactum
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自器官移植的歷史揭開序幕之後,如何降低排斥的現象,一直是醫界致力解決的問題,因應而生的即是抗排斥的藥物。本研究中的Mycophenolic acid (MPA)是用來作為器官移植時抑制免疫反應的藥物,作為Inositol MonoPhosphate DeHydrogenase (INPDH)之非競爭型抑制劑,針對淋巴細胞之合成路徑進行抑制而達到降低免疫反應的發生,而實驗所使用微生物是Penicillium brevicompactum進行深層液態發酵(submerged fermentation)生產MPA。
      為了提高P. brevicompactum生產Mycophenolic acid的產量,本研究採用深層液態發酵的方式,以添加界面活性劑Tween 80作為變因探討Mycophenolic acid的產量,並進一步了解發酵過程中界面活性劑Tween 80扮演的角色及其對生產Mycophenolic acid的影響。
      整體而言添加界面活性劑Tween 80對於P. brevicompactum生產Mycophenolic acid是有正面幫助。本研究得到的結論為當添加界面活性劑Tween 80為0.2%時得到最佳Mycophenolic acid產量為0.512 g/l,提升1.6倍之多;Productivity提升2.1倍為4.196 mg/hr。藉由KLa及SOUR 推測Tween 80的添加扮演促進氧氣傳送的角色,且添加Tween 80也會改變其P. brevicompactum的菌體的型態,又以有緻密核心且外圍毛茸鬆散狀的菌球有最佳的MPA產量。


    Mycophenolic acid (MPA) is a organic acid and had been discovered as early as 1983 by an Italian physician. MPA against to bacteria, fungi, viruses, toumours, psoriasis, and inhibit the grorth of the anthrax bacillus. Mycophenolate mofetil (MMF) is a prodrug of mycophenolic acid, an inhibitor of inosin monophosphate dehydrogenase (IMPDH).Mycophenolate mofetil (MMF), an ester of mycophenolic acid, has been widely used as an immunosuppressant in kidney, heart, and liver transplantationand as a medication to treat other ailments.
    Oxygen transport rates limit the productivites of aerobic fermentations. Penicillium brevicompactum is an aerobic microorganism and improve cell growth by supplying sufficient oxygen. In this study, dissolved oxygen in the fermentation medium plays an important environment factor to affect not only cell growth but also MPA concentration. As the air flow rate was controlled as 0.2vvm、0.5vvm of each batch ,the maximum MPA concentration increased from 0.324 g/l to 0.462 g/l ; Product yield rate increased from25.9 mg/g to 36.9 mg/g. Tween80 addition had shown to increase cell growth and MPA production. The highest MPA production, 0.512 g/l, were obtained when 0.2 % Tween80 were added, which was 1.6-fold of the control. The productivity increased 2.1-fold of the control. Surfact-active substances affect pellet growth. With Penicillium brevicompactum, the large pellets develop with the outer hairy region of pellets when Tween80 was added.

    摘要 I 目錄 II 圖索引 V 表索引 IX 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 第二章 文獻回顧 4 2.1應用微生物之發展 4 2.1.1真菌介紹 4 2.1.2真菌的分類 5 2.1.3青黴菌之介紹 6 2.1.4藥用抗生素的時代 7 2.2 Mycophenolic acid之介紹 10 2.2.1Mycophenolic acid 之發現 10 2.2.2 Mycophenolic acid之生化合成 10 2.2.3 Mycophenolic acid在醫療上之應用 11 2.3人體免疫系統和器官移植之簡介 13 2.3.1人體免疫系統簡介 13 2.3.2器官移植簡介 14 2.3.3器官移植免疫學 15 2.3.4器官排斥 17 2.3.5人體器官移植時所使用的藥物 19 2.3.6 Mycophenolic acid應用在器官移值上 24 2.4發酵動態行為的數學模式 27 2.4.1與生長有關的產物(growth-associated product) 27 2.4.2與生長無關的產物(nongrowth-associated product) 27 2.4.3混合生長相關的產物(mixed-growth-associated product) 28 2.5氧氣對微生物的影響 29 2.5.1溶氧值(DO值) 29 2.5.2溶氧值對於青黴菌之影響 30 2.5.3氧氣質傳對於菌體生長與產物生成之影響 31 2.5.4氧氣質傳係數之影響因子 34 2.5.4.1攪拌速率 35 2.5.4.2曝氣速率 36 2.5.4.3額外添加物 37 2.6界面活性劑 39 2.6.1界面活性劑的分類 39 2.6.2界面活性劑在生物程序之應用 40 第三章 實驗規劃、材料與方法 45 3.1實驗規劃 45 3.2 實驗材料 46 3.2.1 實驗藥品 46 3.2.2實驗儀器及其他設備 48 3.2.3 實驗裝置 49 3.3 實驗菌株與方法 50 3.3.1實驗菌株 50 3.3.2 培養基組成 50 3.4實驗方法 52 3.4.1菌種接種及保存方法 52 3.4.2發酵培養 53 3.4.2.1不同供氧量之震盪培養實驗 53 3.4.2.2添加不同種氧氣因子之震盪培養實驗 53 3.4.2.3在不同供氧量下添加不同濃度Tween 80之震盪培養實驗 54 2.4.2.4液態發酵改變不同的通氣量之發酵槽實驗 54 2.4.2.5液態發酵添加不同濃度Tween 80之發酵實驗 55 3.4.3實驗分析方法: 56 3.4.3.1發酵液處理流程 56 3.4.3.2菌重分析 57 3.4.3.3殘糖分析(Sucrose)-酚-硫酸呈色法分析 58 3.4.3.4產物濃度(MPA)之分析 59 第四章 實驗結果與討論 61 4.1 震盪培養實驗 61 4.1.1不同通供氧量對Penicillium brevicompactum生產Mycophenolic acid影響 61 4.1.2不同種氧氣因子對Penicillium brevicompactum生產Mycophenolic acid的影響 62 4.1.2.1不同界面活性劑對對Penicillium brevicompactum生產MPA之影響 62 4.1.2.2添加n-hexadecane對Penicillium brevicompactum生產MPA之影響 64 4.1.3在不同工作體積下添加不同濃度界面活性劑Tween80之影響 67 4.2 發酵槽培養實驗 70 4.2.1發酵槽實驗之通氣量(aeration rate)對Penicillium brevicompactum 生產MPA之影響 71 4.2.1.1發酵動力曲線的比較 71 4.2.1.2 SOUR值對於菌體生長的影響 74 4.2.1.3 SOUR值對於產物MPA的影響 75 4.2.2 發酵槽實驗之通氣量0.2 vvm下添加Tween80對Penicillium brevicompactum 生產MPA之影響 79 4.2.2.1發酵動力曲線的比較 79 4.2.2.2添加Tween 80對於菌體生長的影響 82 4.2.2.3 添加Tween 80對於產物MPA的影響 83 4.3菌體型態(morphology)對Penicillium brevicompactum生產 Mycophenolic acid 的影響 88 4.3.1不同通氣量對Penicillium brevicompactum生產 Mycophenolic acid之morphology的影響 88 4.3.2添加Tween 80對Penicillium brevicompactum生產Mycophenolic acid之morphology的影響 91 第五章 結論與建議 94 5.1結論 94 5.2建議 95 第六章 參考文獻 96

    辜正弘,1995,“添加正十六烷對青黴菌生長型態及盤尼西林產量之影響”,國立成功大學,碩士論文。
    莊晟榜,2001,“Tween系列界面活性劑對微生物降解碳氫化合物之影響”,私立中原大學化學工程研究所,碩士論文。
    劉佳茹,2004,“ 油脂與界面活性劑對舞菇生長與多醣生產之影響”,大葉大學生物產業科技學系,碩士論文。
    陳奕廷,(2005),“探討pH值通氣量對Penicillium brevicompactum生產Mycophenolic acid之影響”,國立中央大學化學工程與材料工程研究所,碩士論文。
    張筱琳,(2005),“建立肝臟移植病患之藥事照護模式”,國立成功大學醫學院,碩士論文。
    廖茂易,2005,“探討不同供氧量對Kineosphaera limosa生產PHBV之影響”,國立中央大學化學工程與材料工程研究所,碩士論文。
    楮佩瑜,(1997),微生物免疫學速攻,藝軒圖書出版社。
    王三郎,(2002),應用微生物學,高立圖書有限公司。
    葉勤,(2002),現代生物技術原理及其應用,九州圖書文物有限公司。
    Akasaka H., Seto S., Yanagi M., Fukushima S. and Mitsui T. (1988) Industrial production of hyaluronic acid by Streptococcus zooepidemicus. Journal of the Society Cosmetic of Chemists Japan, 22, 35-42.
    Allison AC., Eugui EM. (1996) Purine metabolism and
    immunosuppressive effects of mycophenolate mofetil (MMF). Clinic of transplant, 10, 77-84.
    Ando K., Suzuki S., Tamura G., Amura K., (1969) Antiviral activity of brefeldin A and verruearin. Journal of
    Antibiot., 21, 649-652.
    Arnesen S., Eriksen S. H., Olsen J. and Jensen, B. (1998) Increased production of α-amylase from Thermomyces lanuginosus by the addition of Tween 80. Enzyme and Microbial Technology, 23, 249-252.
    Arthur P. and Panda T. (2000) Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors – the influence of agitator speed. Biochemical Engineering Journal , 4, 115-120.
    Badino Jr. A. C., Facciotti M. C. R., Schmidell W. (2001) Volumetric oxygen transfer coefficient (KLa) in batch cultivations involving non-Newtonian broths. Biochemical Engineering Journal, 8, 111-119.
    Bandaiphet C. and Prasertsan P. (2006) Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydrate Polymers, 66, 216–228.
    Benyhaia F., Jones L. and Plantaz D. (1996b) Mass transfer studies in pneumatic reactors. Chemical Engineering and Technology, 19, 425-431.
    Carlo G. Z., Antonella A., Francesco P. (2004) Determination of the immunosuppressant mycophenolic acid in human serum by solid-state microextraction coupled to liquid chromatography. Journal of Chromatography B, 806, 89-93.
    Casas J., Santos V. and Garcia-Ochoa, F. (2000) Xanthan gum production under several operating condition: molecular structure and rheological properties. Enzyme and Microbial Technology, 26, 282-291.
    Chisti, M. Y. (1989) Airlift Bioreactors. Elsevier Applied Science, London, UK.
    Clarke K. G., Williams P. C., Smit M. S. and Harrison S. T. L. (2006) Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochemical Engineering Journal, 28, 237-242.
    Domingues F.C., Queiroz J.A., Cabral J.M.S., Fonseca L.p. (2000) The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 26, 394-401.
    Dosoretz G. Chen H. C., Grethlein E. (1990) Effect of oxygenation condition on submerged cultures of Phanerochate chrysosporium. Applied Microbiology Biotechnology, 34, 131-137.
    Formica R.N., Lorber K.M., Friedman A.L., Bia M.J., Lakkis F., Smith J.D., and M.I. Lorber. (2003) Sirolimus-Based Immunosuppression With Reduce Dose Cyclosporine or Tacrolimus After Renal Transplantation Transplantation Proceedings, 35, 95S-98S.
    Garcia-Ochoa F., Gomez-Castro E., Santos V.E. (2000) Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27, 680-690.
    Gowthaman M. K., Raghava Rao, K. S. M. S., Ghildyal N. P. and Karanth N. G. (1995) Estimation of kLa in solid-state fermentation using a packed-bed bioreactor. Process Biochemistry, 30, 9-15.
    Hassan I. T. M. and Robinson C. W. (1977) Oxygen transfer in mechanically agitated aqueous systems containing dispelrsed hydrocarbon. Biotechnology and Bioengineering, 19, 661-682.
    Ho C. S., Ju L. K. and Baddour R. F. (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnology and Bioengineering, 36, 1110-1118.
    Hsieh C., Wang H. L., Chen C. C., Hsu T. H., Tseng M. H. (2008) Effect of plant oil and surfactant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondosa. Biochemical
    Engineering Journal, 38, 198-205.
    Husek A. (1997) High-performance Liquid Chromatographic Analysis of Cyclosporin A and Its Oral Solutions. Journal of Chromatography A, 759, 217-224.
    Kang A., Wang Y., Harvey L. M., McNeil B. (2000) Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop. Bioprocess Engineering, 23, 69-74.
    Lai LS. T., Tsai T. H. and Wang. T. C. (2002) Application of Oxygen Vectors to Aspergillus terreus Cultivation. Journal of bioscience and bioengineering, 94, 5, 453-459.
    Linek V. and Benes P. (1976) A study of the mechanisms of gas absorption into oil-water emulsions. Chemical Engineering Science, 31 , 1037-1046.
    Li C. Y., Cheng C. Y. and Chen T. L. (2004) Fed-batch production of lipase by Acinetobacter radioresistens using Tween 80 as the carbon source. Biochemical Engineering Journal, 19, 25-31.
    McMillan J. D. and Wang D. I. C. (1987) Enhanced oxygen transfer using oil-in-water dispersions. Biotechnology engineering V. Annals of the New York Academy of Sciences, 506, 569-582.
    McMillan J. D. and Wang D. I. C. (1990) Mechanisms of oxygen transfer enhancement during submerged cultivation in perfluorochemical-in-water dispersions. Biotechnology engineering VI.Annals of the New York Academy of Sciences, 589, 283-300.
    Merchuk J. C. and Siegel M. H. (1988) Airlift reactors in chemical and biological technology. Journal of Chemical Technology and Biotechnology, 41, 105-120.
    Metz B., Kossen N. W. F. (1977) The growth of molds in the form of pellets: Literature review. Biotechnology and Bioengineering, 19, 781-799.
    Michael F. N.; Dawn M. B. (2003) A possible mechanism of
    gastrointestinal toxicity posed by mycophenolic acid. Pharmacological Reserch, 47, 523-526.
    Mitsui A., Suzuki S. (1969) Immunosuppressive effect of mycophenolic acid. Journal of Antibiot., 22, 358-363.
    Nicole M. van Besouw; Barbara J. van der Mast; Peter J. H. Smak Gregoor; Cees J. Hesse; Jan N. M. IJzermans,;Teun van
    Gelder ;Willem Weimar (1999) Effect of mycophenolate mofetil on erythropoiesis in stable renal transplant patients is correlated with mycophenolic acid trough levels. Nephrol Dial Transplant, 14, 2710-2713.
    Ogrodowski C. S., Hokka C. O. and Santana M. H. A. (2005)
    Production of Hyaluronic Acid by Streptococcus: The Effects of the Addition of Lysozyme and Aeration on the Formation and the Rheological Properties of the Product. Applied Biochemistry and Biotechnology, 121-124, 753-762.
    Özbek B. and Gayik S. (2001) The studies on the oxygen mass transfer coefficient in a bioreactor. Process Biochemistry, 36, 729-741.
    Puthli M. S., Rathod V. K. and Pandit A. B. (2005) Gas-liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor. Biochemical Engineering Journal, 23, 25-30.
    Rau U., Brandt C. (1994) Oxygen controlled batch
    cultivations of Schizophyllum commune for enhanced production of branched β-1,3-glucans. Bioprocess Engineering. 161-165.
    Rau U., Gura E., Olszewski E., Wagner F., (1992) Enhanced glucan formation of flamentous fungi by effective mixing, oxygen limitation and fed-batch processing. Journal of Industrial Microbiology, 9, 19-26.
    Reese E. T. and Maguire A. (1969) Surfactants as stimulants of enzyme production by microorganisms. Applied Biochemistry and Biotechnology, 17, 242-245.
    Richard A. and Margaritis A. (2002) Production and mass transfer characteristics of non-newtonian biopolymers for biomedical applications. Critical Reviews in Biotechnology, 22, 355-374.
    Rols J. L., Condoret J. S., Fonanda C. and Goma G. (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen vectors. Biotechnology and Bioengineering, 35, 427-435.
    Ronald B. (2000) Mycophenolic Acid:A One Hundred Year Odyssey from Antibiotic to Immunosuppressant. Chemical Review, 100, 3801-3825.
    Roukas T. and Mantzouridou F. (2001) Effect of the aeration rate on pullulan production and fermentation broth rheology in an airlift reactor. Journal of Chemical Technology and Biotechnology, 76, 371-376.
    Sonnletiner B. (1998) Dynamic adaptation of microbes. Journal of Biotechnology, 65, 47-60.
    Stalbrand H. (1995) Hemicellulose-degrading enzymes from fungi. Characterization of β-mannase and the man1 gene of Trichoderma reesei. Ph.D. Thesis, Department of Biochemistry, Lund University.
    Stasinopoulos S. J. and Seviour R. J. (1990) Stimulation of exopolysaccharide production in the fungus Acremonium persicinum with fatty acid. Biotechnology and Bioengineering, 36, 778-782.
    Shuler M.L. and Kargi F. (1992) Bioprocess Engineering: Basic Concepts, Prentice Hall, Englewood Cliffs, NJ.
    Takahashi J., Abekawa G. and Yamada K. (1960) Effect of non-ionic surface active agents on mycelial form and amylase production of A. niger. Nippon Nogei Kagaku Kaishi, 34, 1043-1045.
    Ulf D. R., Christian T., Martin B., Gerhard E. and Hans-Michael T. (2001) Determination of Mycophenolic Acid and Mycophenolate Mofetil by High-Performance Liquid Chromatography Using Postcolumn Derivatization. Anal. Chem. 73, 41-46.
    Umesaki Y., Kawai Y. and Mutai M. (1977) Effect of Tween 80 on glucosyltransferase production in Stretococcus mutans. Applied Biochemistry and Biotechnology, 34, 115-119.
    Wei G., Li Y., Du G. and Chen J. (2003) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochemistry, 38, 1133-1138.
    Witter R., Baumgartl H., Lűbbers D. W., Schűgerl K. (1986) Investigations of oxygen transfer into Penicillium chrysopenum pellets by microprobe measurements. Biotechnology and Bioengineering, 1024-1036.
    Xu F., Yuan Q.P., and Zhu Y. (2007) Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochemistry, 42, 289-293.
    Zhao S., Kuttuva S. G. and Ju L. K. (1999) Oxygen transfer
    characteristics of multiple-phase dispersions simulating water-in-oil xanthan fermentations. Bioprocess Engineering, 20, 313-323.

    QR CODE
    :::