跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡桓宇
Huang-Yu Tsai
論文名稱: 數值模擬多孔性介質燃燒爐中之熱增強燃燒現象
指導教授: 曾重仁
Chung-Jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 82
中文關鍵詞: 多孔性介質燃燒熱輻射
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • 誌謝II 摘要III 目錄IV 表目錄VII 圖目錄VIII 符號表XIII 第一章 前言1 1.1簡介1 1.2文獻回顧4 1.3本文研究方向10 第二章 數學模式11 2.1基本假設11 2.2統御方程式12 2.3邊界條件14 2.4參數定義15 2.4.1當量比15 2.4.2熱釋放率16 2.4.3消散係數16 2.4.4散射比16 2.4.5光學厚度16 2.4.6孔隙率17 2.4.7圓球的平均直徑17 2.4.8熱傳導係數19 2.4.9壓力降20 2.5輻射熱傳方程式之解法20 2.6模擬燃燒的方法25 第三章 解題方法27 第四章 結果與討論30 4.1不銹鋼鐵絲網30 4.1.1當量比對火焰結構之影響30 4.1.2與實驗結果之比較31 4.1.3改變吸收係數及散射係數之結果31 4.1.4火焰位置對火焰結構之影響32 4.1.5流速對火焰結構之影響33 4.1.6光學厚度對火焰結構之影響33 4.1.7散射比對火焰結構之影響34 4.1.8熱釋放率34 4.2部分穩定的氧化鋯35 4.2.1孔隙率對火焰結構之影響35 4.2.2與實驗結果之比較36 4.3不銹鋼鐵絲網和部份穩定的氧化鋯之差異36 第五章 結論與建議38 5.1結論38 5.2對未來研究之建議40 附錄A 離散座標法42 參考文獻77

    [1]Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    [2]Weinberg, F. J., “Combustion in Heat-Recirculating Burners,” in Advanced Combustion Methods, Edited by F. J. Weinberg, Academic Press, New York, pp. 183-236, 1986.
    [3]Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
    [3]Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
    [3]Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
    [6]Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.
    [7]Lloyd, S. A., and Weinberg, F. J., “A Burner for Mixtures of Very Low Heat Content,” Nature, Vol. 251, pp. 47-49, 1974.
    [8]Lloyd, S. A., and Weinberg, F. J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367-370, 1975.
    [9]Hardesty, D. R., and Weinberg, F. J., “Burners Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 8, pp. 201-214, 1974.
    [10]Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
    [10]Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
    [10]Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
    [10]Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
    [14]Tong, T.-W., and Sathe, S. B., “Heat Transfer Characteristics of Porous Radiant Burners,” Journal of Heat Transfer, Vol. 113, pp. 423-428, 1991.
    [14]Tong, T.-W., and Sathe, S. B., “Heat Transfer Characteristics of Porous Radiant Burners,” Journal of Heat Transfer, Vol. 113, pp. 423-428, 1991.
    [14]Tong, T.-W., and Sathe, S. B., “Heat Transfer Characteristics of Porous Radiant Burners,” Journal of Heat Transfer, Vol. 113, pp. 423-428, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [17]Hanamura, K., and Echigo, R., “An Analysis of Flame Stabilization Mechanism in Radiation Burners,” Wärme- und Stoffübertragung, Vol. 26, pp. 277-383, 1991.
    [24]Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
    [24]Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
    [26]Tseng, C.-J., and Howell, J. R., “Liquid Fuel Combustion within Porous Inert Media,” Heat Transfer with Combined Modes, ASME-HTD, Vol. 299, pp. 63-69, 1994.
    [27]Tseng, C.-J., and Howell, J. R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” Combustion Science and Technology, Vol. 112, pp. 141-161, 1996.
    [28]Kaplan, M., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
    [29]Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
    [30]Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, 1972.
    [31]Hiatt, J. P., and Hall, M. J., “Pore Scale Turbulence in Porous Ceramic Burners,” 1994 Technical Meeting of the Central States Section of the Combustion Institute, June, 1994.
    [32]Tseng, C.-J., and Lee, C.-H., “Thermally-Enhanced Combustion in a Porous Medium Burner,” Submitted to the Journal of the Chinese Society of Mechanical Engineers, 2000.
    [33]李家欣,多孔性陶瓷介質燃燒爐結構對燃燒現象之影響;國立中央大學碩士論文;中壢;民國八十九年。
    [34]Kaviany, M., Principles of Heat Transfer in Porous Media, Springer-Verlag, 1991.
    [35]Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
    [35]Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
    [37]Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, Wiley, New York, 1975.
    [38]Bejan, A., Convection Heat Transfer, John Wiley & Sons, New York, 1984.
    [39]Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, Third Ed., Hemisphere Publishing Corp., Washington, DC., 1992.
    [40]Li, H.-Y., Özisik, M. N., and Tsai, J.-R., “Two-Dimensional Radiation in a Cylinder with Spatially Varying Albedo,” Journal of Thermophysics, Vol. 6, No. 1, pp. 180-182, 1992.
    [41]Chang, S. L., and Rhee, K. T., “Blackbody Radiation Functions,” International Communications of Heat Mass Transfer, Vol. 11, pp. 451-455, 1984.
    [42]Hsu, P.-F., and Matthews, R. D., “The Necessity of Using Detailed Kinetics in Models for Premixed Combustion within Porous Media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.
    [43]Westbrook, C. K., and Dryer, F. L., “Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,” Combustion Science and Technology, Vol. 27, pp. 31-43, 1981.
    [44]Mills, A. F., Basic Heat and Mass Transfer, Richard D. Irwin, Inc., 1995.
    [45]High-Tech Ceramics product literature, High-Tech Ceramics Co., Alfred, New York, 1988.
    [46]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980.
    [46]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980.

    QR CODE
    :::