| 研究生: |
李庭輝 Ting-Hui Lee |
|---|---|
| 論文名稱: |
應用於毫米波系統之串聯式圓極化H形 貼片天線陣列設計 Design of Series-Fed Circularly-Polarized H-Shaped Patch Antenna Arrays for Millimeter-Wave Applications |
| 指導教授: |
丘增杰
Tsen-Chieh Chiu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 毫米波 、串聯式 、圓極化 、H形 、貼片天線 、天線陣列 |
| 外文關鍵詞: | Millimeter-Wave, Series-Fed, Circularly-Polarized, H-Shaped, Patch Antenna, Antenna Arrays |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出應用於毫米波系統之串聯式圓極化H形貼片天線陣列設計。H形貼片天線陣列主要是由兩個不同金屬層的T形貼片天線所組成,藉由兩貼片天線間的耦合來產生相位差90度,並調整兩貼片天線的尺寸來達到大小相同、空間中相互正交的兩電場,來達到圓極化的效果。一般在使用線極化天線傳輸或接收電磁波的過程當中會受到多重路徑所產生的極化損耗之影響,因此為了提高傳輸訊號的品質與穩定度,須仰賴圓極化天線來做為傳輸或接收的工具。
本設計是使用微帶線串聯式饋入的方式來實現H形圓極化貼片天線陣列,在天線陣列的尾端使用天線來取代匹配電阻。天線陣列的設計是使用RO4003C的板材,板材結構為三層金屬兩層介質。
本設計的圓極化H形天線陣列,單個天線單元|S11|的量測頻寬21.4% (25.05~31.04 GHz),軸比頻寬8.6%(26.00~28.35GHz),增益達3.1 dBic 在28.5 GHz;四個單元天線陣列|S11|的量測頻寬20.2%(25.44~31.17 GHz),軸比頻寬3.4% ( 28.90 ~ 29.90 GHz ),增益達6.8 dBic在28.5 GHz。
Designs of Series-Fed Circularly-Polarized H-Shaped Patch Antenna Arrays for Millimeter-Wave Applications are proposed in the thesis. The proposed H-shaped patch antenna array is mainly composed of two T-shaped patch antennas with different metal layers, and the phase difference of 90 degrees is generated by the coupling between the two patch antennas. By adjusting the size of the two patch antennas to make the same power and two orthogonal of electric fields in space, the effect of circular polarization is achieved. Generally, when using linearly-polarized antennas, the transmission or receiving of the electromagnetic wave is often influenced by the polarization loss of multiple path. In order to increase quality and stability of transmitted signal, the circularly-polarized antenna is a reliable tool of transmission or reception.
In this design, the H-shaped circularly polarized patch antenna array is series-fed with microstrip, and an antenna is used at the end of the antenna array to replace the terminating load. The design of the antenna array is made of RO4003C substrate, the substrate structure is composed of three metal layers and two dielectric layers.
For the single-element antenna, the measured impedance bandwidth is 21.4% (25.05~31.04 GHz), axial ratio bandwidth is 8.6% (26.00~28.35 GHz), and the gain is 3.1 dBic at 28.5 GHz; For the 4-element antenna array, the measured bandwidth is 20.2% (25.44~31.17 GHz), the axial ratio bandwidth is 3.4% (28.90~29.90 GHz), and the gain is 6.8 dBic at 28.5 GHz.
[1]Microwave Journal. Is millimeter wave technology future of wireless communications?[on-line] Available:https://www.microwavejournal.com/blogs/25-5g/post/28775-is-millimeter-wave-technology-future-of-wireless-communications
[2]CNN. I tried 5G. It will change your life – if you can find it. [on-line]
Available:https://edition.cnn.com/2019/08/09/tech/5g-review/index.html
[3]Y. Ghasempour, C. R. da Silva, C. Cordeiro, and E. W. Knightly, “IEEE 802.11 ay: Next-generation 60 GHz communication for 100 Gb/s WiFi,” IEEE Communications Magazine, vol. 55, no. 12, pp. 186–192, Dec. 2017.
[4]A. Bleicher, “The 5G phone future,” IEEE Spectrum, vol. 50, no. 7, pp. 15–16, 2013.
[5]H. Y. Zhang, F. S. Zhang and F. Zhang: “High-power array antenna based on phased-adjustable array element for wireless power transmission,” IEEE Antennas Wireless Propag., vol. 16, pp. 2249–2253, Jun.2017.
[6]C.-X. Mao, S. Gao, and Y. Wang, “Broadband high-gain beam-scanning antenna array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4864–4868, Sep. 2017.
[7]M. Khalily, R. Tafazolli, T. A. Rahman, and M. R. Kamarudin, “Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1305–1308, 2016.
[8]S. Gao, Q. Luo, and F. Zhu, Circularly Polarized Antennas. Hoboken, NJ, USA: Wiley, Nov. 2013.
[9]C. C. Counselman, “Multipath-rejecting GPS antennas,” in Proc. IEEE, vol. 87, no. 1, pp. 86–91, Jan. 1999.
[10]W. W. Han, F. Yang, J. O. Yang, and P. Yang, “Low-cost wideband and high-gain slotted cavity antenna using high-order modes for millimeterwave application,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4624–4631, Nov. 2015.
[11]C. Zhang, X. Liang, X. Bai, J. Geng, and R. Jin, “A broadband dual circularly polarized patch antenna with wide beamwidth,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1057–1060, 2014.
[12]T. Jang, H. Kim, I. Song, C. Lee and C. Park, “Low-profile Wideband E-shaped Patch Antenna for 60GHz Communication”, in Proc. Asia Pacific Microwave Conference(APMC), Nanjing, China, pp. 1440-1442, Dec. 2015.
[13]T.Y Yang, W. Hong, and Y. Zhang, “An sicl-excited wideband circularly polarized cavity-backed patch antenna for ieee 802.11aj (45 ghz) applications”, Ieee antennas and wireless propagation letters, vol. 15, pp1265-pp1268, 2016
[14]S. X. Ta and I. Park, “Compact wideband circularly polarized patch antenna array using metasurface,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1932–1935, 2017.
[15]T. H. Jang, H. Y. Kim, I. S. Song, C. J. Lee, J. H. Lee, and C. S. Park. A Wideband Aperture Efficient 60-GHz Series-Fed E-Shaped Patch Antenna Array With Copolarized Parasitic Patches. IEEE Transactions on Antennas and Propagation, 64(12):5518–5521, December 2016.
[16]H. W. Lai, D. Xue, H. Wong, K. K. So, and X. Y. Zhang, ‘‘Broadband circularly polarized patch antenna arrays with multiple-layers structure,’’ IEEE Antennas Wireless Propag.Lett., vol. 16, pp. 525–528, 2017.
[17]P. S. Hall, “Application of sequential feeding to wide bandwidth, circularly polarized microstrip patch arrays,” in Inst. Elect. Eng. Proc. H, vol. 136, Oct. 1989, pp. 390–398
[18]Y. Yang, B. Sun, and J. Guo, “A low-cost, single-layer, dual circularly polarized antenna for millimeter-wave applications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, pp. 651–655, April 2019.
[19]T. R. Cameron, A. T. Sutinjo and M. Okoniewski, "A Circularly Polarized Broadside Radiating “Herringbone” Array Design With the Leaky-Wave Approach," in IEEE Antennas and Wireless Propagation Letters, vol. 9, no. , pp. 826-829, 2010.
[20]Constantine A. Balanis, Antenna Theory :Analysis and Design,3rd edition, Wiley-Interscience,2005
[21]Chung, K.L.: ‘A wideband circularly polarized H-shaped patch antenna’, IEEE Trans. Antennas Propag, 2010, 58, pp. 3379–3383