| 研究生: |
高興宇 GAO,XING-YU |
|---|---|
| 論文名稱: |
添加鐵顆粒與鈦鋯金屬玻璃顆粒對鎂鋅鈣塊狀金屬玻璃複材機械性質之研究 Mechanical Properties of Mg-based Bulk Metallic Glass Composite with Ex-situ Adding Spherical Fe and TiZr Metallic Glass Particles |
| 指導教授: |
鄭憲清
JHENG,SIAN-CING |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 生物相容性 、生物可降解 、縫合鉚釘 、金屬玻璃合金 、破裂韌性 |
| 外文關鍵詞: | biocompatibility, biodegradation, suture anchor, metallic glass alloys, fracture toughness |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨科進行肌腱及韌帶縫合手術時,縫合用線的末端會使用鉚釘來固定在骨骼上,因此骨科手術經常用到縫合鉚釘;縫合鉚釘必須能夠承受生物運動在縫合處的應力而不損壞,且不會危害人體,這使得醫界對於縫合鉚釘的材料改善相當有興趣。我們希望材料具有良好的機械性質,本實驗室製作出的鎂基金屬玻璃合金強度高,且楊氏係數與人體的骨骼相近,因此適合用於縫合鉚釘的材料開發。本研究選擇以具有較佳玻璃形成能力的Mg66Zn29Ca5為基底分別添加微米級鐵顆粒及鈦鋯金屬玻璃顆粒以製作鎂基金屬玻璃合金複材,期望提升其破裂韌性。由於冷卻速率的限制,本研究所製作之4 mm直徑棒材均呈現部分非晶態,但其抗壓強度仍遠高於一般的鎂合金。由實驗結果顯示,添加鐵顆粒之鎂基金屬玻璃合金複材的破裂韌性並無明顯的改善,但添加球狀鈦鋯金屬玻璃顆粒之鎂基金屬玻璃合金複材的破裂韌性則有明顯的,隨著鈦鋯金屬玻璃顆粒的添加量增加至30 vol.%,破裂韌性也由1.17提升至4.19 MPa‧m1/2,且能保持535 MPa的最大抗壓強度。
Suture anchors are often used to rivet the suture wires at the bones in orthopedic surgery. Therefore, suture anchor must be able to withstand the stress of biological movements and non-harmful to human body. This attracts the medical community to pay lots attention on the improvement of materials for suture anchor. We want that the material has the good mechanical properties of the material. The Mg-based bulk metallic glasses (BMG) produced by our laboratory has high strength and Young's modulus is similar to the value of human bones. Therefore, it is very suitable to apply the Mg-based metallic glass alloys on suture anchor. In this study, Mg66Zn29Ca5, has the best glass forming ability in the Mg-Zn-Ca metallic glass alloy system, was selected to be the base alloy. Then this base alloy was added with different vol% micro-sized spherical Fe and TiZr-based metallic glass particles to form Mg-based bulk metallic glass composite (BMGC), respectively for improving its fracture toughness. Due to the limitation of cooling rate, the BMGC rods with 4 mm in diameter only present partial metallic glass state, but still show much higher compressive strength of commercial magnesium alloy. Based on the results of this study, the Mg-based BMGCs added Fe particle could not obtain effective improvement on fracture toughness. On the other hand, the Mg-based BMGCs added with TiZr-based metallic glass particles present a clear improvement of fracture toughness. With increasing the addition of Ti-Zr metallic glass particles to 30 vol.%, the fracture toughness of Mg-based BMGC increases from 1.17 to 4.19 MPa‧m1/2 and remains the maximum compressive strength of 535 MPa.
[1]. D.W. Hoeppner and V. Chandrasekaran, “Fretting in orthopaedic implants: a review”, Wear, 173, 1994, pp.189-197.
[2]. J. Lu, H. Yu and C. Chen, “Biological properties of calcium phosphate biomaterials for bone repair: a review”, RSC Advances, 2018, pp.2015–2033.
[3]. S.F. Hulbert, L.L. Hench, D. Forbers, L.S. Bowman, “History of Bioceramics”, Ceramics International, vol.8, 1982, no 4, pp.131-140.
[4]. D.F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, vol.25, no.4, 1980, pp.611-636.
[5]. H. Li, Y. Zheng, L. Qin, “Progress of biodegradable metals”, Progress in Natural Science: Materials International, 24, 2014, pp.414-422.
[6]. J. Wang, S. Huang, Y. Li, Y. Wei, S. Guo, F. Pan, “Ultrahigh strength MgZnCa eutectic alloy/Fe particle composites with excellent plasticity”, Materials Letters, vol.137, 2014, pp.139-142.
[7]. H.F. Li and Y.F. Zheng, “Recent advances in bulk metallic glasses for biomedical applications”, Acta Biomaterialia, 36, 2016, pp.1-20.
[8]. D.M. Miskovic, K. Pohl, N. Birbilis, K.J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg–Zn–Ca ternary metallic glasses”, Journal of Materials Chemistry B, 4, 2016, pp.2679-2690.
[9]. N.T. Nguyen, O.S. Seo, C.A. Lee, M.G. Lee, J.H. Kim and H.Y. Kim, “Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures”, Materials, 2014, pp.1271-1295.
[10]. P.C. Wong, “Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, Mar.2017.
[11]. P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, J.S.C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, Journal of Alloys and Compounds, 504S, 2010, pp.98–101.
[12]. Y.C. Chang, J.C. Huang, C.W. Tang, C.I. Chang and J.S.C. Jang, “Viscous Flow Behavior and Workability of Mg-Cu-(Ag)-Gd Bulk Metallic Glasses”, Materials Transactions, Vol. 49, No. 11, 2008, pp.2605-2610.
[13]. K.F. Chang, M.L.T. Guo, R.H. Kong, C.Y.A. Tsao, J.C. Huangb, J.S.C. Jang, “Mg–Cu–Gd layered composite plate synthesized via the spray forming process”, Materials Science and Engineering A, 477, 2008, pp.58–62.
[14]. J.W. WU, “The Influence of Iron-particles Addition on Thermal and Mechanical Properties of Mg-based Amorphous Alloy” unpublished Master's thesis, National Central University, 2014.
[15]. P.J. WONG, “Mechanical Properties of Magnesium Based Bulk Meallic Glass Composites with the Ti particles”, unpublished Master's thesis, National Central University, 2012.
[16]. M.S. SUEI, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master's thesis, National Central University, 2015.
[17]. T.B. Matias, V. Roche, R.P. Nogueira, “Mg-Zn-Ca amorphous alloys for application as temporary implant : Effect of Zn content of the mechanical and corrosion properties”, Materials and Design ,vol. 110, 2016, pp.188-195.
[18]. 吳學陞著,新興材料-塊狀金屬玻璃金屬材料,工業材料,第149期,1999年。
[19]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol.19, 1934, p.37.
[20]. A. Brenner, D.E. Couch, E.K. Williams and J. Res., “natn. Bur. Stand”, vol.44, 1950, p.109.
[21]. P. Duwez and S.C.H. Lin, “Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol.38, 1967, pp.4096-4097.
[22]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature, vol.187,1960, p.869.
[23]. D. Turnbull, “Phase Changes”, Solid State Physics, vol.3, 1956, pp.225-306.
[24]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol.35, 1974, pp.1-10.
[25]. D.R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Physics and Chemistry of Glasses, vol.7, 1966, pp.159-168.
[26]. H.A. Davies, “The formation of metallic glass”, Physics and Chemistry of Glasses, vol.17, 1976, pp.159-173.
[27]. A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer-Link, Inc., Berlin Heidelberg, 1995, p.159.
[28]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science & Engineering, A, vol.226-228, 1997, pp.357-363.
[29]. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Materials Transactions JIM, vol. 32-7, 1991, pp. 609-616.
[30]. A. Inoue, T Nakamura, N. Nishiyama and T. Masumoto, “Development of Mg based amorphous alloys with higher amounts of rare earth elements”, Materials Transactions JIM, vol.33, 1992, pp.937-945.
[31]. H.C. Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol.45, 2001, pp.1039-1045.
[32]. Y.K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol.49, 2003, pp.843-848.
[33]. D.G. Pan, H.F. Zhang, A.M. Wang and Z.Q. Hu., “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, vol.89, 2006, 261904 pp.1-3.
[34]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura and A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol.434-435, 2007, pp.138-140.
[35]. F.X. Qin, X.M. Wang and A. Inoue, “Effect of annealing on microstructure and mechanical property of Ti-Zr-Cu-Pd bulk metallic glass”, Intermetallics, vol.15, 2007, pp.1337-1342.
[36]. R.E. Reed-Hill, Physical Metallurgy Principles 3rd edition, PWS Pub. Co., Boston, USA, 1994.
[37]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[38]. A. Inoue, T. Zhang and A. Takeuchi, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp.1779-1793.
[39]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp.855-864.
[40]. R.W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, vol.9, New York, USA, 1991.
[41]. W. Paul and R.J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, vol. 22, Advances in Physics, 1973, pp. 531-580.
[42]. K.L. Chapra, “Thin Film Phenomena”, McGraw-Hill, New York, 1969.
[43]. B. Li, N. Nordstrom and E.J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol. 237, 1997, pp.207-215.
[44]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol. 94, 2002, pp.141-148.
[45]. P.S. Grant, “Spray forming”, Progress in Materials Science, vol. 39, 1995, pp.497-545.
[46]. C.R.M. Afonso, C. Bolfarini, C.S. Kiminami and N.D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solid, vol. 284, 2001, pp.134-138.
[47]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[48]. S.R. Elliot, Physics of Amorphous Materials, Longman, Harlow, 1990, p. 30.
[49]. H.S. Elliot, “Zridence of a Glass-Liquid Transition in a Gold-Germanium”, J. Chem. Phys., vol.48, 1968, pp.2560-2565.
[50]. W. Kauzman, “The nature of the glassy state and the behavior of liquids at low temperatures”, Chem Rev., vol.43, 1948, pp.219-225.
[51]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka,“Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys”, Journal of Materials Research, vol. 16, 2001, pp.2836-2844.
[52]. X.H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, J. Appl. Phys., vol.101, 2007, pp.88-108.
[53]. 顧宜著,複合材料,新文京開發出版公司,1992年。
[54]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年,p.10。
[55]. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications, Institute for Material Research”, Tohoku University, Sendai, Japan, 1999.
[56]. A.S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979, pp.47-58.
[57]. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, vol. 7, 1992, pp. 1564-1583.
[58]. S.R. Elliot, Physics of Amorphous Materials 2nd Ed., John Wiley & Sons, Inc., USA, 1990.
[59]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol.25, 1977, pp.407-415.
[60]. L. Xu, E. Zhang, D. Yin, S. Zeng, K. Yang, “In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application”, J Mater Sci: Mater, 2008, pp.1017–1025.
[61]. W. Kunz and H.R. Hilzinger, “Temperature dependence of permeability in amorphous alloys.”, IEEE TRANSACTION ON MAGNETICS, vol.MAG-17, no6, Nov.1981, pp.2695-2697.
[62]. C.W. Chu, J.S.C. Jang, S.M. Chiu, J.P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, 517, 2009, pp.4930-4933.
[63]. Y.P. Hung, K.J. Wu, C.Y.A. Tsao, J.C. Huang, P.L. Hsieh, J.S.C Jang, “AZ61 Mg with nano SiO2 particles prepared by spray forming plus extrusion”, Key Engineering Materials, vol.313, 2006, pp.77-82.
[64]. L.J. Chang, J.S.C. Jang, B.C. Yang, J.C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0–10) amorphous alloys”, Journal of Alloys and Compounds, vol.434–435, 2007, pp.221-224.
[65]. L.J. Chang, G.R. Fang, J.S.C. Jang, I.S. Lee, J.C. Huang, C.Y.A. Tsao, “Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nanoZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, vol. 351, 2007, pp.103-108.
[66]. J.S.C. Jang and J.Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, APPLIED PHYSICS LETTERS, vol.92, 2008, 011930 pp.1-3.
[67]. A. Inoue, B.L. Shen, H. Koshiba, H. Kato and A.R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material, vol. 2, 2003, pp.661-663.