| 研究生: |
陳式倫 Shih-Lun Chen |
|---|---|
| 論文名稱: |
進階的相差空間調變方案 Advanced Differential Spatial Modulation Schemes |
| 指導教授: | 魏瑞益 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 相差空間調變 、廣義相差空間調變 、空間調變 |
| 外文關鍵詞: | generalize differential spatial modulation, differential spatial modulation, spatial modulation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研究兩種相差空間調變,第一種是在兩個區塊間多傳一個位元的相差調變,我們提出了一種新的位元映射法,它比原來的方案有更好的位元錯誤率,第二種是廣義相差空間調變,我們考慮在相差空時調變上使用符元交錯的廣義相差空間調變方案。我們推導出交錯樣式的數量,並且還提出了具有傳送多樣性為2的交錯樣式。將符元式的傳送順序分解為區塊式的傳送順序和交錯樣式,通過選擇交錯樣式,所提出的方案比現有的廣義相差空間調變方案具有更高的傳輸速率。距離分析和電腦模擬均發現所提出的方案具有較好的錯誤性能。
In this thesis, we research two kinds of differential spatial modulation(DSM). One is increased-rate DSM by transmitting one additional data bit per two blocks. We propose a new bit mapping method, which has the lower bit error rate than the original scheme. The other is generalized DSM(GDSM), we consider a GDSM scheme that uses symbol interleaving on differential space-time modulation. The number of interleaving patterns is derived, and interleaving patterns with transmit diversity two are created as well. By selecting the interleaving patterns, the proposed scheme has higher data rates than the existing GDSM scheme. Distance analysis and computer simulation both show that the proposed scheme has satisfactory error performance.
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
[4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
[5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
[6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
[7] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
[8] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
[9] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
[10] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 10,pp. 8821-8834, Oct. 2017.
[11] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[12] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform.Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
[13] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
[14] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr.2019.
[15] R. Y. Wei, “Low-complexity differential spatial modulation schemes fora lot of antennas,” IEEE Access, vol. 8, pp. 63725-63734, 2020.
[16] R. Y. Wei, “Differential encoding by a look-up table for quadrature amplitude modulation,” IEEE Trans. Commun., vol. 59, pp. 84-94, Jan. 2011.
[17] R. Y. Wei and L. T. Chen, ‘‘Further results on differential encoding by a table,’’ IEEE Transactions on Communications, vol. 60, no. 9, pp. 2580-2590, Sep. 2012.
[18] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[19] 蔡譯緯, “相差空間調變的進階結果” 國立中央大學通訊工程研究所,碩士論文, 六月. 2019.
[20] 林育宏, “使用符元交錯相差空時調變的廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 七月. 2020.