跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳君萍
Chung-Ping Chen
論文名稱: 光學薄膜於光通訊中色散補償之設計
Designing Chirped-Cavity Dispersion Compensator Filters for Optical Communication
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 98
中文關鍵詞: 光通訊薄膜光學色散補償
外文關鍵詞: Optical Filter, Disprsion compensation, Optical Communication
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類社會信息化速率的加快,對通信的需求也成高速增長的趨勢,由於光纖傳輸技術不斷的發展,在傳輸領域中,光傳輸已佔主導地位。光纖存在巨大的頻寬資源和優厚的傳輸性能,是實現高速、大容量傳輸的理想傳輸媒介,而近年來,長距離的高密度分波多工系統中採用了摻鉺光纖放大器的技術,使光纖衰減對傳輸距離的限制得以解決,但因光傳輸速率的大為提升,使得整個傳輸線路的總色散也隨之增加,造成信號脈衝變形,對於高速傳輸系統而言是一個主要的限制,因此色散補償的管理技術將是一需克服之技術。
    本論文利用光學薄膜設計一種反射式的啁啾式共振色散補償濾光片(Chirped-Cavity dispersion compensator filter),設計中結合了Gires-Tournois干涉濾光片及Chirped濾光片的優勢,使其具有更彈性的頻寬及群速度延遲色散值,且有高度潛力的發展性。


    As the amount of information rate for human using grows up, the requirement of signal communication also trends to increase. Due to the technology of optical fiber transmission development unceasingly, optical transmission occupies the leading role in transmission domain. However optical fiber not only has natural resources of enormous bandwidth, but also has munificent transmission properties. It is an idea transmission medium to carry out high speed and large capacity.
    Nowadays, long distance of dense wavelength division multiplexing (DWDM) system has already adopted the technology of Erbium doped fiber amplifier, which provides a solution to the limitation of fiber loss. When the transmission rate promotes enormously, total dispersion effect of all line of communication becomes serious and signal pulse is out of shape. Therefore dispersion effect is a mainly limitation of high speed transmission system and the manage technology of dispersion compensation is a problem needs to be overcome.
    This study utilizes optical thin film to design a reflective Chirped-Cavity dispersion compensator filter. This design combines the advantage of Gires-Tournois interferometers (GTI) filter and Chirped dielectric mirror (CM) which has flexible bandwidth and group delay dispersion for dispersion compensation. It also has high potential development.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1研究背景及目的 1 1-2 論文架構 3 第二章 在光纖中行進的波 4 2-1 馬克斯威爾方程式 4 2-2 基本傳遞方程式 5 2-3 光纖損耗 15 2-3-1光纖的微彎損失 15 2-3-2 吸收 16 2-3-3 瑞立散射 17 2-4 非線性效應 18 2-4-1 受激散射 18 2-4-2 克爾效應 20 2-5 在線性介質中的群速度色散參數 24 2-6 色散導致的脈衝拓寬 29 2-6-1 群速度色散參數 29 2-6-2 脈衝寬度的定義 34 2-7 高階的色散效應 36 2-8 系統信號率的限制 38 2-8-1 頻寬較大的光源 38 2-8-2 頻寬較小的光源 40 第三章 各種色散補償 42 3-1 利用電子的方法 43 3-2 高色散光纖 47 3-3 光學等效濾光片 49 3-3-1 Gires-Tournois 干涉濾光片 50 3-3-2 布拉格光纖光柵 55 3-4 光學相位共軛 64 第四章 啁啾式共振色散補償濾光片之設計 67 4-1 背景理論 67 4-2 動機 67 4-3 程式設計濾波片 69 4-3-1 簡形優化 70 4-4 設計實例 75 4-5 分析與討論 80 第五章 結論 83 參考文獻 85

    1. V. Srikant, “Broadband dispersion slope compensation in high bit rate and ultra long haul system,” Optics Communications Conference TuH1-1.
    2. Kaler. R. S., Sharma. Ajay K., and Kamal. T.S., “Comparison of pre-, post- and symmetrical-dispersion compensation schemes for 10 Gb/s NRZ links using standard and dispersion compensated fibers,” Optics Communications, vol. 209, Issue: 1-3, 2002, p. 107-123.
    3. Govind P. Agrawal, “Fiber-Optic Communication Systems,” A Wiley-Interscience publication.
    4. Djafar K. Mynbaev, Lowll L. Scheiner, “Fiber-Optic Communications Technology,” Prentice Hall.
    5. Natalia M. Litchinitser, Benjamin J. Eggleton, and David B. Patterson, “Fiber Bragg Grating for Dispersion Compensation in Transmission : Theroretical Model and Design Criteria for Nearly Ideal Pulse Recompression,” J. Lightwave Technol., vol . 15, p.8, 1997.
    6. BT Laboratories Martlesham Heath, Ipswich IP5 7 RE, UK, “Design of step-chirped fiber Bragg grating,” Optics Communications, vol. 136, p. 461-469, 1997.
    7. Raman Kashyap, Monica de lacerda Rocha, “On the group delay characteristics of chirped fiber Bragg grating,” Optics Communication, vol. 153, p. 19-22, 1998.
    8. Govind P. Agrawal, “Nonlinear Fiber Optics.” Second Edition, Academic Press, 1995.
    9. B. E. A. Saleh, M. C. Teich, “Fundamental of Photonics,” John Wiely&Son Inc., 1911.
    10. Kaler. R. S., Sharma. Ajay K., and Kamal. T.S., “Comparison of pre-, post- and symmetrical-dispersion compensation schemes for 10 Gb/s NRZ links using standard and dispersion compensated fibers,” Optics Communications, vol. 209, Issue: 1-3, 2002, p. 107-123.
    11. Palai. P. and Thyagarajan. K., “Effect of self-phase modulation on a dispersion compensated link employing a dispersion-compensating fiber,” Optics Communications, vol. 143, Issue: 4-6, 2002, p. 107-123.
    12. Kuhl, Jochim Heppner, “Dispersion compensation with Dielectric Multilayer Interferometers,” IEEE J. of Quantum Electronic, 1993.
    13. Jurgen Kuhl, Joachim Heppner, “Compression of Femtosecond Optical Pulses with Dielectric Multilayer Interferometers,” IEEE, vol. 22, p. 182-185, 1986.
    14. M. Jablonski, Member, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, Member, “Entirely Thin-Film Allpass Coupled-Cavity Filters in a Parallel Configuration for Adjustable Dispersion-Slope Compensation,” IEEE, vol. 13, p. 1118-2001, 2001
    15. 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 第三版, 2002。
    16. H. A. Macleod, “Thin-Film Optical Filter ,” Third Edition, Institute of Physics Publishing Bristol and Philadephia.
    17. Raman Kashyap, “Fiber Bragg Grating,” Academic Press.
    18. Tony D. Noe, “Design of reflective phase compensator filters for telecommunication,” Appl. Opt. 41, vol. 16, p.3183-3186, 2001.
    19. Robert Szipocs, Karpat Ferencz, “Chirped multilayer coating for broadband dispersion control in femtosecond lasers,” Opt. Lett. Vol. 19, p. 201-203, 1994.
    20. E. J. Mayer, J. Mobius, A. Euteneuer, W. W. Ruhle, “Ultrabroadband chirped mirrors for femtosecond laser,” Opt. Lett. Vol. 22, 1997.
    21. N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, U. Keller, “Design of broadband double-chirped mirrors for the generation of sub-10fs laser pulses,” Optical Interference Coating Conference, WE3-2, p. 296-298, 1998.
    22. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, M. K. Truberskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometer,” Appl. Phys. B 70, S51-S57, 2000.
    23. Mark Albert, “Designers use multiple means to measure and manage dispersion,” WDM Solution, p. 35-38, 2002.

    QR CODE
    :::