跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈雅菁
Ya-Jing Shen
論文名稱: 利用無人機收集感測資料之任務時間和電力成本的優化研究
Optimizing Mission Time and Energy Cost for UAV-Assisted Sensing Data Gathering in WSNs
指導教授: 胡誌麟
Chin-Lin Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 54
中文關鍵詞: 無線感測網路無人機資料收集無人機部署最佳化
外文關鍵詞: wireless sensor network, UAV, data gathering, ferry placement optimization
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人機價格低廉且能裝載多種感測器等優勢,使應運而生的應用在日常生活中逐漸增加。然而,無人機的緩衝區大小和電量並非無限量,任一項之不足都可能導致無人機的任務中斷。此文提出優化資料收集問題,期許在含有無人機的無線感測網路中,得到最短任務時間,這裡指的任務時間是收集所有目標節點資訊所需的時間。文中考慮無人機在三種不同狀態下的能耗及剩餘緩衝區,並將上述之資料收集問題形塑為混和整數線性規劃的最佳化問題。(無人機的三種狀態分別為: 飛行狀態、等候狀態、充電與卸載狀態。) 因為此最佳化問題屬於非決定性多項式集合問題 (NP-hard),我們提出一個優化無人機能耗及緩衝區佔據量的無人機部署方法 (OEBP),追求最小化無人機的任務時間,此方法包含最短路徑演算法 (SPA) 及等候點選擇演算法 (WPSA) 兩部分。藉由前者,我們可取得近似最佳化的無人機飛行路徑;而藉由後者,我們先轉換等候點,此轉換是考量目標範圍的重心所做的轉換,接著從中選定最適合的一點,作為無人機中途充電及資料卸載的中繼點。模擬結果顯示,此 OEBP 方法與下列三種方法相比,等候點部署在凸包上 (convexhull) 的方法、等候點部署在任務範圍邊界的方法及等候點隨機部署的方法,皆能節省任務時間及總能耗,特別是當目標節點數眾多時,成效更加明顯。


    With the advantage of low cost and the availability of installing sensor devices, unmanned aerial vehicles (UAVs) applications are increasingly deployed in our daily life. However, both the buffer size and the energy of UAVs are limited, insufficiency of either may cause the interruption of their tasks. In this paper, we propose an optimizing data gathering problem to get the minimized mission time of gathering all the messages from target points of interest (PoIs) in a UAV-aided wireless sensor network and formulate the problem as a mixed-integer linear programming (MILP) optimization problem considering the energy cost and the residual buffer size in three of UAV states, flying, waiting, and charging-offloading. As the problem is non-deterministic polynomial-time hardness (NP-hard), we propose an optimizing energy cost and buffer occupancy ferry placement scheme(OEBP), including shortest path algorithm (SPA) and waiting point selection algorithm (WPSA), aiming to minimize the mission time. By SPA, we can get the near-optimal UAV flying route. Then, WPSA transfers the waiting points which take the barycentric of the target area into account and decides the most suitable one for UAV charging and data offloading. Simulation results present that our OEBP scheme is capable of reducing both the mission time and the energy consumption compared to the convex hull, the border and the random waiting points methods, especially when the number of PoIs is large.

    1 Introduction 1 2 Related Work 4 2.1 UAV Placement..................................................... 4 2.2 Flying Path Planning.............................................. 5 2.3 Energy-Awareness For UAV-Assisted Systems......................... 6 2.4 Buffer-Awareness For UAV-Assisted Systems......................... 7 3 System Model 9 3.1 System Model...................................................... 9 3.2 Waiting Points.................................................... 13 3.3 Energy Cost Function and Buffer Occupancy Function................ 14 4 Problem Formulation: Optimal MILP-Based Solution 18 4.1 Utility Function.................................................. 19 4.2 Problem Constraints............................................... 19 4.3 Optimization Problem.............................................. 20 5 Optimizing energy cost and buffer occupancy ferry placement scheme 21 5.1 Shortest Path Algorithm (SPA)..................................... 21 5.2 Waiting Point Selection Algorithm (WPSA).......................... 22 6 Performance Results 26 6.1 Simulation Setting................................................ 27 6.2 Results of preloaded energy....................................... 29 6.3 Results of preloaded buffer size.................................. 30 6.4 Results of PoIs number............................................ 32 7 Conclusion 35 Bibliography 36

    [1] D. S. Lakew, U. Sa'ad, N.-N.Dao, W. Na, and S. Cho, “Routing in flying ad hoc networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol.22, no.2, pp.1071–1120, 2020.
    [2] J. Yoon, A.-H. Lee, and H. Lee, “Rendezvous: Opportunistic data delivery to mobile users by uavs through target trajectory prediction,” IEEE Transactions on Vehicular Technology, vol.69, no.2, pp.2230–2245, 2019.
    [3] H. Hu, K. Xiong, G. Qu, Q. Ni, P. Fan, and K. B. Letaief, “Aoi-minimal trajectory planning and data collection in uav-assisted wireless powered iot networks,” IEEE Internet of Things Journal, vol.8, no.2, pp.1211–1223, 2020.
    [4] S. Iranmanesh, R. Raad, M. S. Raheel, F. Tubbal, and T. Jan, “Novel dtn mobility-driven routing in autonomous drone logistics networks,” IEEE Access, vol.8, pp.13 661–13673, 2019.
    [5] K. Sakai, M.-T.Sun, and W.-S. Ku, “Data-intensive routing in delay-tolerant networks,” in Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2019, pp.2440–2448.
    [6] J. Peng, H. Gao, L. Liu, Y. Wu, and X. Xu, “Fntar: A future network topology aware routing protocol in uav networks,” in Proceedings of 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp.1–6.
    [7] B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot routing problem in wireless sensor networks,” IEEE transactions on knowledge and data engineering, vol.19, no.9, pp.1252–1261, 2007.
    [8] S. S. Wilks, “Mathematical statistics,” 1962.
    [9] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “ Distributed target classification and tracking in sensor networks,” Proceedings of the IEEE, vol.91,no.8,pp.1163–1171, 2003.
    [10] M. Y. Arafat and S. Moh, “Bio-inspired approaches for energy-efficient localization and clustering in uav networks for monitoring wildfires in remote areas,” IEEE Access, vol.9, pp.18649–18669, 2021.
    [11] S.-F. Chou, A.-C. Pang, and Y.-J. Yu, “Energy-aware 3d unmanned aerial vehicle deployment for network throughput optimization,” IEEE Transactions on Wireless Communications, vol.19, no.1, pp.563–578, 2019.
    [12] Y. Chen, W. Feng, and G. Zheng, “Optimum placement of uav as relays,” IEEE Communications Letters, vol.22, no.2, pp.248–251, 2017.
    [13] R. Fan, J. Cui, S. Jin, K. Yang, and J. An, “Optimal node placement and resource allocation for uav relaying network,” IEEE Communications Letters, vol.22, no.4, pp. 808–811, 2018.
    [14] A. P. Renold and S. Chandrakala, “Convex-hull-based boundary detection in unattended wireless sensor networks,” IEEE Sensors Letters, vol.1, no.4, pp.1–4, 2017.
    [15] X. Liu, T. Wang, W. Jia, A. Liu, and K. Chi, “Quick convex hull-based rendezvous planning for delay-harsh mobile data gathering in disjoint sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019.
    [16] O. Bouhamed, H. Ghazzai, H. Besbes, and Y. Massoud, “A uav-assisted data collection for wireless sensor networks: Autonomous navigation and scheduling,” IEEE Access, vol.8, pp.110446–110460, 2020.
    [17] J. Liu, P. Tong, X. Wang, B. Bai, and H. Dai, “Uav-aided data collection for information freshness in wireless sensor networks,” IEEE Transactions on Wireless Communications, vol.20, no.4, pp.2368–2382, 2020.
    [18] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient multi-uav navigation for long-term communication coverage by deep reinforcement learning,” IEEE Transactions on Mobile Computing, vol.19, no.6, pp.1274–1285,2019.
    [19] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-uav enabled wireless networks,” IEEE Transactions on Wireless Communications, vol.17, no.3, pp.2109–2121, 2018.
    [20] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing uav,” IEEE Transactions on Wireless Communications, vol.18, no. 4, pp.2329–2345, 2019.
    [21] N. H. Motlagh, M. Bagaa, and T. Taleb, “Energy and delay aware task assignment mechanism for uav-based iot platform,” IEEE internet of things journal, vol.6, no.4, pp. 6523–6536, 2019.
    [22] M. Thammawichai, S. P. Baliyarasimhuni, E. C. Kerrigan, and J. B. Sousa, “Optimizing communication and computation for multi-uav information gathering applications,” IEEE Transactions on Aerospace and Electronic Systems, vol.54, no.2,pp. 601–615, 2017.
    [23] D. Yang, Q. Wu ,Y. Zeng, and R. Zhang, “Energy tradeoff in ground-to-uav communication via trajectory design,” IEEE Transactions on Vehicular Technology, vol.67, no. 7, pp.6721–6726, 2018.
    [24] C.-L. Hu, S.-Z. Huang, Z. Zhang, and L. Hui, “Energy-balanced optimization on flying ferry placement for data gathering in wireless sensor networks,” IEEE Access, vol.9, pp.70906–70923, 2021.
    [25] A. Trotta, F. D. Andreagiovanni, M. DiFelice, E. Natalizio, and K. R. Chowdhury,“When uavs ride a bus: Towards energy-efficient city-scale video surveillance,” in Proceedings of IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018, pp.1043–1051.
    [26] R. Hamidouche, Z. Aliouat, A. A. A. Ari, and M. Gueroui, “An efficient clustering strategy avoiding buffer overflow in iot sensors: a bio-inspired based approach,” IEEE Access, vol.7, pp.156733–156751, 2019.
    [27] J.-H. Lee, K.-H. Park, Y.-C. Ko, and M.-S. Alouini, “Throughput maximization of mixed fso/rf uav-aided mobile relaying with a buffer,” IEEE Transactions on Wireless Communications, vol.20, no.1, pp.683–694,2020.
    [28] Y. Emami, K. Li, and E. Tovar, “Buffer-aware scheduling for uav relay networks with energy fairness,” in Proceedings of 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020, pp.1–5.
    [29] J.-H. Lee, K.-H. Park, M.-S. Alouini, and Y.-C. Ko, “On the throughput of mixed fso/rf uav-enabled mobile relaying systems with a buffer constraint,” in Proceedings of ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 2019, pp.1–6.
    [30] P. Matzakos, T. Spyropoulos, and C. Bonnet, “Joint scheduling and buffer management policies for dtn applications of different traffic classes,” IEEE transactions on Mobile Computing, vol.17, no.12, pp.2818–2834, 2018.
    [31] Y. Emami, B. Wei, K. Li, W. Ni, and E. Tovar, “Deep q-networks for aerial data collection in multi-uav-assisted wireless sensor networks,” in Proceedings of 2021 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2021, pp.669–674.
    [32] B. Grünbaum, Convex polytopes. Springer, 1967, vol.16.
    [33] T. Ebert, J. Belz, and O. Nelles, “Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls,” in Proceedings of 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, 2014, pp.310–314.
    [34] M. S. Floater, K. Hormann, and G. Kós,“ A general construction of barycentric coordinates over convex polygons,” advances in computational mathematics, vol.24, no. 1-4, pp.311–331, 2006.
    [35] A. Noth, “Design of solar powered airplanes for continuous flight,” Ph.D. dissertation, ETH Zurich, 2008.
    [36] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle routing problems for drone delivery,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.47, no.1, pp.70–85, 2016.
    [37] Y. Song, X. Sun, H. Wang, W. Dong, and Y. Ji, “Design of charging coil for unmanned aerial vehicle-enabled wireless power transfer,” in Proceedings of 2018 8th International Conference on Power and Energy Systems (ICPES). IEEE, 2018, pp.268–272.
    [38] “Drone communication-data link,” https://www.911security.com/learn/airspace-security/drone-fundamentals/drone-communication-data-link Accessed August 5, 2021.
    [39] F. J. REH, “Pareto principle or the 80/20 rule,” October 23, 2019, http://management.about.com/cs/generalmanagement/a/Pareto081202.htm Accessed August 8, 2021.
    [40] A. Bahabry, X. Wan, H. Ghazzai, H. Menouar, G. Vesonder, and Y. Massoud,“ Low-altitude navigation for multi-rotor drones in urban areas,” IEEE Access, vol.7, pp.87 716–87731, 2019.
    [41] L. Jacobson and B. Kanber, Genetic algorithms in Java basics. New York: Apress, 2015.
    [42] S. Safavi and U. A. Khan, “Localization in mobile networks via virtual convexhulls,” IEEE Transactions on Signal and Information Processing over Networks, vol.4, no.1, pp.188–201, 2017.
    [43] M. Haklay and P. Weber, “Openstreetmap: User-generated streetmaps,” IEEE Pervasive computing, vol.7, no.4, pp.12–18, 2008.
    [44] A. Thibbotuwawa, P. Nielsen, B. Zbigniew, and G. Bocewicz, “Energy consumption in unmanned aerial vehicles: A review of energy consumption models and their relation to the uav routing,” in Proceedings of International Conference on Information Systems Architecture and Technology. Springer, 2018, pp.173–184.

    QR CODE
    :::