跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃月君
Yue-Jiun Huang
論文名稱: 固定比例投資組合保險策略在合成型擔保債權憑證權益分券之適用性
CPPI on CDO Equity Tranches
指導教授: 陳建中
Chien-Chung Chen
岳夢蘭
Meng-Lan Yueh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 權益分券合成型擔保債權憑證固定比例投資組合保險策略因子相關性結構模型信用違約交換指數
外文關鍵詞: CPPI, CDS index, Latent Factor Model, Synthetic CDO Equity Tranches
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討在因子相關性結構模型下,固定比例投資組合保險策略在合成型擔保債權憑證權益分券上的應用結果。以過去兩年十個月的iTraxx Europe 5Y指數和iTraxx Hivol 5Y指數的歷史資料做為擔保債權憑證的連結指數,並針對不同目標乘數及觀察期間對策略適用性的影響作比較分析。
    實證結果顯示,對於連結iTraxx Europe 5Y指數的權益分券的應用結果而言,在適當的乘數設定之下,績效結果大致上是很好的;但連結iTraxx Hivol 5Y指數的權益分券的應用結果而言,因為權益分券本金是最早拿來償還違約損失的特性,再加上固定比例投資組合保險策略中的乘數效果會將iTraxx Hivol 5Y指數高波動度的特性放大,使得策略不但在指數反彈回升時無法鎖住原先獲利,更侵蝕到本金保護水準,而導致策略失敗。


    This paper examines whether the Constant Proportion Portfolio Insurance (CPPI) could achieve good performance on Synthetic Collateralized Debt Obligation (CDO) Equity Tranches. The standard two indexes, iTraxx Europe 5Y and iTraxx Hivol 5Y, are used as the underlying indexes of CDO Equity Tranches, which are considered Equity Tranches as the risky assets in the CPPI strategy. Moreover, I use monthly and quarterly data to investigate the impact of different target multipliers on the performance of the CPPI strategy.
    The result of this paper shows that if the target multipliers are suitable and the underlying index of portfolios is iTraxx Europe 5Y, the performances are good. On the contrary, if the underlying index is iTraxx Hivol 5Y, the CPPI strategy performs really badly and fails to satisfy the investment target. This is not only due to the property of Equity Tranche but the magnify effects of multipliers on the high volatilities of iTraxx Hivol 5Y index.

    第一章 緒論..........................................1 第一節 研究背景 .....................................1 第二節 研究動機與目的................................5 第三節 研究架構......................................6 第二章 文獻探討......................................................7 第一節 信用風險模型回顧..............................7 第二節 擔保債權憑證評價模式..........................8 第三節 投資組合策略方法回顧.........................11 第三章 模型設定.....................................16 第一節 擔保債權憑證評價模型..........................16 第二節 固定比例投資組合保險策略......................23 第四章 實證分析.....................................27 第一節 合成型擔保債權憑證的評價......................27 第二節 固定比例投資組合保險策略應用結果..............30 第三節 敏感度分析....................................38 第五章 結論與建議...................................59 第一節 結論..........................................59 第二節 建議..........................................60 參考文獻...............................................61

    Altman, E.I., Brady, A. Resti and A. Sironi, “The link between default and recovery rate: Theory, empirical evidence and implications”, Journal of Business, 2004.
    Andersen, L., J. Sidenius, and S. Basu, “All your hedges in one basket”, RISK, November, 2003.
    Andersen, L. and J. Sidenius, “Extensions of the Gaussian copula model”, Journal of Credit Risk, Vol. 1, No. 1, 2004, pp. 29-70
    Bertrand, P., and J.L. Prigent, “Portfolio Insurance: The extreme value approach to the CPPI method“, Working Paper, 2001.
    Bertrand, P., J. et al., “Portfolio Insurance Strategies: OBPI versus CPPI“, Working Paper, 2002
    Black, F. and R. Jones, “Simplifying portfolio insurance”, Journal of Porfolio Management, Vol. 14, No. 1, 1987, pp. 48-51.
    Black, F. and R. Jones, “Simplifying portfolio insurance for corporate pension plans”, Journal of Porfolio Management, Vol. 14, No. 4, 1988, pp. 33-37.
    Felsenheimer, J., et al., “Credit Derivatives Special”, HVB Global Markets Research, 2004
    Garcia C.B. and F.J. Gould, “A note on the measurement of risk in a portfolio”, Financial Analysts Journal, 1987, pp. 61-69
    Gibson, M., “Understanding the risk of synthetic CDOs”, Working Paper, rev. 2004
    Gill, K., et al., “Principal protection strategies for alternative investments”, FitchRatings Structured Finance, 2004
    Gregory, J. and J. Laurent, “Basket default swaps, CDO’s and factor copulas”, Journal of Risk, Vol. 7, No. 4, 2005, pp. 103-22.
    Hull, J., and A. White, “Valuing credit default swapⅡ: Modeling default correlations”, Journal of Derivatives, Vol. 8, No. 3, 2004, pp. 8-23.
    Hull, J., and A. White, “Valuation of a CDO and nth to default CDS without Monte Carlo Simulation”, Journal of Derivatives, Vol. 12, No. 2, 2004, pp. 8-23
    Hull, J., and A. White, “Valuing credit derivatives using an implied copula approach”, Journal of Derivatives, Vol. 14, No. 2, 2006, pp. 8-28.
    Hull, J., and A. White, “Dynamic models of portfolio credit risk: a simplified approach”, Working Paper, 2006.
    Li, D.X. “On Default Correlation: A Copula Approach”, Journal of Fixed Income, Vol. 9 (March 2000), pp. 43-54.
    Meneguzzo, D., and W. Vecchiato, “Coupula sensitivity in collateralized debt obligations and basket default swaps pricing and risk monitoring”, Risk Management Dept. Intesa Bank, 2002
    Montenay, A., et al., “Credit CPPI”, DrKW Debt research, 2005
    Perold, A. and W. Sharp, “Dynamic strategies for asset allocation”, Financial Analysts Journal, 1988, pp. 16-27
    Rubinstein, M. and H.E. Leland, “Replicating Options with Positions in stock and cash”, Financial Analysts Journal, 1981, pp. 63-72
    Whetten, M., et al., “Tranching credit risk: Examples with CDOs and the iTraxx index”, Nomura Fixed Income Research, 2004.
    Whetten, M., et al., “Anatomy of Credit CPPI”, Nomura Fixed Income Research, 2005.
    Zhu, Y. and R.C. Kavee, “Performance of Portfolio Insurance Strategies”, Journal of Portfolio Management, 1988, pp. 48-54
    林恩平,「因子相關性結構模型之下合成型擔保債權憑證之評價與避險」,國立政治大學金融研究所,碩士論文,2006

    QR CODE
    :::