跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹盛淵
Sheng-Yuan Tsao
論文名稱: 抵抗幾何攻擊之數位浮水印設計
A Digital Watermarking Scheme Resisting Geometrical Transformations
指導教授: 蘇柏齊
Po-Chyi Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 55
中文關鍵詞: 幾何扭曲攻擊.SIFT指紋辨識數位浮水印
外文關鍵詞: fingerprinting, SIFT, Digital watermark, Geometrical Distortion.
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 指紋追蹤(fingerprinting)是數位浮水印中具有潛力的一種應用,主要被期望用來阻止非法的複製以及保護文件擁有者的智慧財產權。藉著嵌入代表接收者個人的浮水印,我們能夠根據那些從不合法的複製中擷取出來的隱藏訊號來追蹤散佈的來源。在這篇論文中,我們提出了兩個視訊的指紋追蹤的方法。考慮到視訊畫面可能會受到幾何上的修改,兩個方法皆採用了SIFT來解決這類的問題。更精確的說,在以特徵點為基礎的指紋追蹤方法中,我們根據尺度空間所找到的特徵點尺度以及方向來產生具有不變性的區域。而浮水印也將被嵌入至視訊編碼規格如MPEG2或MPEG4中的DCT係數或量化指標。由於在指紋追蹤的應用中並未強制地要求需要盲檢測,因此在我們第一個方法中,利用原始的畫面來將受到攻擊的畫面回復成原始的形狀才去偵測浮水印。而第二個方法則是不需要原始畫面來簡化浮水印的偵測。實驗結果證明所提出方法的可行性。


    Fingerprinting is one of the potential applications of digital watermarking, which is expected to be helpful in discouraging illegal copying and protecting the intellectual property rights of content owners. By embedding the watermark representing the individual ngerprint of the intended receiver in the content, we may trace down the source of distribution according to the extracted hidden signal of an illegal copy. In this research, we propose two video ngerprinting schemes for digital videos. Considering that the video frames may be geometrically modi ed, both of the schemes make use of Scale Invariant Feature Transform (SIFT) to deal with such attacks. To be more specific, our feature-based ngerprinting schemes employ the invariant regions of each specific frame based on the orientation and the scale of the scale-space feature points. The watermark will be embedded into DCT coefficients or quantization indices, which will appear in the coding structure of such video codec as MPEG2 or MPEG4. Our first scheme requires the
    original frames in the watermark detector for recovering the attacked frames into the original shape before the watermark detection as this application may not strictly require the blind watermark detection. The second scheme
    doesnot require the original frames to simplify the watermark detection. The
    experimental results will demonstrate the feasibility of the proposed methods.

    1 Introduction 1 1.1 Motivation of the Research . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution of the Research . . . . . . . . . . . . . . . . . . . 2 2 Related Work 4 3 Proposed Method 10 3.1 Synchronization-based watermarking . . . . . . . . . . . . . . 10 3.1.1 Watermark Embedding . . . . . . . . . . . . . . . . . . 11 3.1.2 Watermark Detection . . . . . . . . . . . . . . . . . . . 15 3.1.3 Determining the Watermark . . . . . . . . . . . . . . . 26 3.2 Feature-based Watermarking . . . . . . . . . . . . . . . . . . . 28 3.2.1 Watermark Embedding . . . . . . . . . . . . . . . . . . 28 3.2.2 Watermark Detection . . . . . . . . . . . . . . . . . . . 30 4 Experiment Result 32 4.1 False Alarm Analysis . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Imperceptibility Test . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Robustness Test . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Conclusion 41

    [1] A.J. Ahumada and H.A. Peterson. Luminance-model-based DCT quantization for color image compression. Human vision, visual processing,
    and digital display III, pages 365-74, 1992.
    [2] J. Babaud, A.P. Witkin, M. Baudin, and R.O. Duda. Uniqueness of the
    Gaussian kernel for scale-space ltering. IEEE Transactions on Pattern
    Analysis and Machine Intelligence, 8(1):26-33, 1986.
    [3] P. Bas, J.M. Chassery, and B. Macq. Geometrically invariant water-
    marking using feature points. IEEE Transactions on Image Processing,
    11(9):1014-1028, 2002.
    [4] I. Biehl and B. Meyer. Protocols for collusion-secure asymmetric nger-
    printing. In STACS 97, pages 399-412. Springer, 1997.
    [5] G. Blakley, C. Meadows, and G. Purdy. Fingerprinting long forgiving
    messages. In Advances in CryptologyXCRYPTO85 Proceedings, pages
    180-189. Springer, 1986.
    [6] D. Boneh and J. Shaw. Collusion-Secure Fingerprinting for Digital
    Data. In Advances in cryptology, CRYPTO''95: 15th Annual Interna-
    tional Cryptology Conference, Santa Barbara, California, USA, August
    27-31, 1995: proceedings, page 452. Springer, 1995.
    [7] D. Boneh and J. Shaw. Collusion-secure ngerprinting for digital data.
    IEEE Transactions on Information Theory, 44(5):1897-1905, 1998.
    [8] I. Cox, M. Miller, and J. Bloom. Digital watermark: Principle and
    practice, 2001.
    [9] I.J. Cox, M.L. Miller, K. Tanaka, and Y. Wakasu. Digital watermarking,
    June 22 1999. US Patent 5,915,027.
    [10] C. De Vleeschouwer, J.F. Delaigle, and B. Macq. Invisibility and ap-
    plication functionalities in perceptual watermarkingXan overview. Pro-
    ceedings of the IEEE, 90(1), 2002.
    [11] X. Gao, C. Deng, X. Li, and D. Tao. Geometric Distortion Insensitive
    Image Watermarking in A ne Covariant Regions. IEEE transactions
    on systems, man and cybernetics. Part C, Applications and reviews,
    40(3):278-286, 2010.
    [12] C. Harris and M. Stephens. A combined corner and edge detector. In
    Alvey vision conference, volume 15, page 50. Manchester, UK, 1988.
    [13] A. Herrigel, S. Voloshynovskiy, and Y. Rytsar. The watermark tem-
    plate attack. In Proc. SPIE Security and Watermarking of Multimedia
    Contents III, volume 4314, pages 394-405. Citeseer, 2001.
    [14] O.R. JJK and T. Pun. Rotation, scale and translation invariant spread
    spectrum digital image watermarking. Signal Processing, 66(3):303-317,
    1998.
    [15] D. Kirovski, F.A.P. Petitcolas, and Z. Landau. The Replacement At-
    tack. IEEE Transactions on Audio, Speech, and Language Processing,
    15(6):1922-1931, 2007.
    [16] J.J. Koenderink. The structure of images. Biological cybernetics,
    50(5):363-370, 1984.
    [17] M. Kutter. Watermarking resisting to translation, rotation, and scaling.
    In Proceedings of SPIE- The International Society for Optical Engineer-
    ing, volume 3528, pages 423-431. Citeseer, 1999.
    [18] M. Kutter, S.K. Bhattacharjee, and T. Ebrahimi. Towards second gener-
    ation watermarking schemes. In IEEE Int Conf Image Process, volume 1,
    pages 320-323, 1999.
    [19] C.Y. Lin, M. Wu, JA Bloom, IJ Cox, ML Miller, and YM Lui. Ro-
    tation, scale, and translation resilient watermarking for images. IEEE
    Transactions on Image Processing, 10(5):767-782, 2001.
    [20] T. Lindeberg. Scale-space theory: A basic tool for analyzing structures
    at di erent scales. Journal of applied statistics, 21(1):225-270, 1994.
    [21] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
    International journal of computer vision, 60(2):91-110, 2004.
    [22] W. Lu, H. Lu, and F.L. Chung. Feature based watermarking using
    watermark template match. Applied Mathematics and computation,
    177(1):377-386, 2006.
    [23] BS Manjunath, C. Shekhar, and R. Chellappa. A new approach to image
    feature detection with applications* 1. Pattern Recognition, 29(4):627-640, 1996.
    [24] K. Mikolajczyk and C. Schmid. Scale & a ne invariant interest point
    detectors. International Journal of Computer Vision, 60(1):63-86, 2004.
    [25] M. Miller and J. Bloom. Computing the probability of false watermark
    detection. In Information Hiding, pages 146-158. Springer, 2000.
    [26] H.A. Peterson, H. Peng, JH Morgan, and W.B. Pennebaker. Quantiza-
    tion of color image components in the DCT domain. In Proceedings of
    SPIE, volume 1453, page 210, 1991.
    [27] F.A.P. Petitcolas. Watermarking schemes evaluation. IEEE Signal Pro-
    cessing Magazine, 17(5):58-64, 2000.
    [28] B. P tzmann and M. Waidner. Asymmetric ngerprinting for larger
    collusions. In Conference on Computer and Communications Security:
    Proceedings of the 4 th ACM conference on Computer and communi-
    cations security. Association for Computing Machinery, Inc, One Astor
    Plaza, 1515 Broadway, New York, NY, 10036-5701, USA,, 1997.
    [29] JS Seo and CD Yoo. Image watermarking based on invariant regions
    of scale-space representation. IEEE transactions on Signal Processing,
    54(4):1537-1549, 2006.
    [30] P. Shelby and P. Thierry. Robust template matching for a ne resis-
    tant image watermarks. IEEE Transactions on Image Processing. v9 i6,
    pages 1123-1129.
    [31] W.D. Smith. Studies in computational geometry motivated by mesh
    generation. 1989.
    [32] N.R. Wagner. Fingerprinting. In Proceedings of the 1983 IEEE Sympo-
    sium on Security and Privacy, page 18. IEEE Computer Society, 1983.

    QR CODE
    :::