跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林旭敏
Hsu-min Lin
論文名稱: 多重商品類別的線上再購行為預測模型
A Prediction Model for Online Repurchase Behavior in Multiple Product Categories
指導教授: 何靖遠
Chin-yuan Ho
許文錦
Wen-chin Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 68
中文關鍵詞: 再購行為擴充的RFM模型購買經驗經驗品
外文關鍵詞: Repurchase Behavior, Augmented RFM Model, Purchase Experience, Experience Goods
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來電子商務環境的營業額成長快速,預估在2020年虛擬通路營業額更會成長至整個零售業的20%,因此企業應重視虛擬通路的經營。在台灣電子商務環境中,買家最常進行交易的平台有Yahoo!奇摩、露天以及PChome。由於購物平台之間的競爭相當激烈,我們透過觀察購物平台上消費者的再購行為,希望幫助業者找出影響買家再購行為的因素,設法留住這些有價值的顧客。根據哈佛商業評論一份跨產業調查報告,如果買家的再購率上升5%,整體獲利則可以上升25%至95%,再購率對獲利的正向影響在電子商務將更為可觀。因此本研究將買家在同一購物平台重複交易的行為視為平台再購行為,有平台再購行為的買家視為有價值的顧客。
    本研究蒐集Yahoo!奇摩拍賣16個類別的商品,自2014年1月1日至2015年4月30日的所有交易資料,約1,800萬筆。本研究延續過去對平台再購的研究,以2015年1月1日為預測時間點,之前3個月的交易當做歷史資料,之後2個月的交易作為未來資料,產生9個預測變數,包括RFM相關的四個變數以及擴充的五個變數和平台再購變數。我們先進行敘述統計分析,進而分別針對女裝與服飾類別、四類熱門經驗品類別以及全經驗品類別共八類商品建立平台再購行為的預測模型,以探討此模型在多重類別商品中的準確率。我們發現在全經驗品再購預測分析中,若交易間隔天數越長、平均交易金額越高及商品總數量越多,未來再購機率越低;另一方面,當消費者在過去一段時間中購買的次數越多、總交易金額越高、最後一次評價越高、交易賣家數越多、商品類別多樣性越高,未來再購機率越高。在預測方法選擇上,決策樹較羅吉斯迴歸有更準確的預測結果。基於本研究的結果,我們提供平台更準確找出有價值買家的方法,並給予實務上的建議。


    E-commerce revenue has grown rapidly in recent years. It is estimated that revenue from the virtual channel in retailing industry will reach twenty percent in 2020. Enterprises should pay more attention to the operation of the virtual channel. Buyers in Taiwan are most commonly making online transactions on Yahoo!, Ruten and PChome. Given there is a fierce competition between e-commerce platforms in Taiwan, we hope to understand factors influencing buyers’ repurchase behaviors so to help identify valuable online customers. Based on a cross-industrial study in Harvard Business Review, if buyers’ repurchase rate increase five percent, the overall revenue can increase twenty five percent to ninety five percent, and this positive effect would be greater for e-businesses. Therefore this study defines repeated purchase on a certain e-commerce website as the platform repurchase behavior of online consumers, and who are considered valuable customers to the e-commerce website.
    This study collected all transaction data from Yahoo! Taiwan auction website, including sixteen categories of products from January 1, 2014 to April 30, 2015, totaled 18 million transaction records. As a sequel to previous studies in platform repurchase behavior, we use January 1, 2015 as the prediction point in time, and three preceding months of transaction records as historical dataset and two succeeding months of transaction records as future dataset to generate 9 independent variables, including 4 RFM-related variables and 5 augmented variables, and the repurchase behavior variable. We conduct descriptive statistical analysis on 16 categories of data and then establish the prediction models of platform repurchase behavior in women apparel category, in popular experience goods categories and in entire experience goods categories respectively, to examine the effectiveness of the prediction model across multiple product category. Our findings show that recency, average monetary and purchase quantity are negatively related to repurchase behavior, while frequency, total monetary, last rating, number of purchased sellers, category diversity are positively related to repurchase behavior. In terms of analytical methodologies, we find that decision tree performs better than logistic regression. Based on the study results, we provide guidelines to identify valuable buyers and practical advices to the platform.

    摘要 i Abstract ii 誌謝 i 表目錄 vi 圖目錄 vii 一、緒論 1 1-1 研究背景與動機 1 1-2 研究目的與研究問題 5 1-3 概念模型 6 1-4 預期結果與貢獻 6 二、 文獻探討 7 2-1 RFM模型擴充與顧客終身價值 7 2-2 商品類別多樣性與商品總數量 8 2-3 購買經驗 10 2-4 最後一次評價 11 2-5 忠誠度 11 2-6 經驗品與搜尋品 11 三、研究模型 13 3-1 研究模型與假說推導 13 3-1-1 RFM擴充模型 14 3-1-2 交易經驗 15 3-2 研究設計 17 3-2-1 資料蒐集 17 3-2-2 資料耙取流程 19 3-2-3 分析方法 23 四、資料分析 25 4-1 敘述性統計 25 4-2 羅吉斯迴歸分析 33 4-2-1 RFM變數 36 4-2-2 擴充變數 37 4-2-3 調節變數 38 4-3 預測模型 44 五、結論與建議 47 5-1研究結果與結論 47 5-1-1 準確率的提升 47 5-1-2全經驗品類別的擴充 47 5-1-3購買經驗對預測變數的調節作用 47 5-2 研究貢獻 48 5-3 管理意涵與實務意涵 48 5-4 研究限制 49 5-4-1 類別的限制 49 5-4-2 時間區段的限制 49 5-4-3 外部效度的限制 49 參考文獻 50 英文文獻 50 中文文獻 56

    英文文獻
    1. Anderson, R. E., & Srinivasan, S. S. (2003). E-satisfaction and e-loyalty: a contingency framework. Psychology and Marketing, 20(2), 123-138.
    2. Adomavicius, G., & Kwon, Y.. Toward more diverse recommendations: Item re-ranking methods for recommender systems. Paper presented at the 19th Workshop on Information Technologies and Systems, 2009.
    3. Adomavicius, G., & Kwon, Y. (2012). Improving aggregate recommendation diversity using ranking-based techniques. Knowledge and Data Engineering, IEEE Transactions on, 24(5), 896-911.
    4. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
    5. Borle, S., Singh, S. S., & Jain, D. C. (2008). Customer lifetime value measurement. Management science, 54(1), 100-112.
    6. Boulding, W., Kalar, A., Staelin, R., & Zeithaml, V. A. (1993). A dynamic process model of sevice quality: From expectation to behavioral intentions. Journal of Marketing Research, 30(1), 7-27.
    7. Bradley, K., & Smyth, B. (2001). Improving recommendation diversity. Proceedings of the Twelfth National Conference in Artificial Intelligence and Cognitive Science (AICS-01) (pp. 75-84).
    8. Brush, T. H., & Artz, K. W. (1999). Toward a contingent resource‐based theory: the impact of information asymmetry on the value of capabilities in veterinary medicine. Strategic Management Journal, 20(3), 223-250.
    9. Brynjolfsson, E., Hu, Y., & Simester, D. (2011). Goodbye pareto principle, hello long tail: The effect of search costs on the concentration of product sales. Management Science, 57(8), 1373-1386.
    10. Carter, M., Wright, R., Thatcher, J. B., & Klein, R. (2014). Understanding online customers’ ties to merchants: the moderating influence of trust on the relationship between switching costs and e-loyalty. European Journal of Information Systems, 23(2), 185-204.
    11. Chen, Y. L., Hsu, C. L., & Chou, S. C. (2003). Constructing a multi-valued and multi-labeled decision tree. Expert Systems with Applications, 25(2), 199-209.
    12. C. H. Yu. A rolling RFM-based prediction model of online repurchase behavior: A case of women’s apparel at Yahoo! Taiwan auction website. (2014).
    13. C. Y. Ho, H. L. Chen, C.Y. Liao: A RFM-based forecast model of consumers’ E-marketplace repurchase behavior at Yahoo! Taiwan auction website. Journal of Data Analysis, 9(1), 1-23.
    14. Ekelund, R. B., Mixon, F. G., & Ressler, R. W. (1995). Advertising and information: an empirical study of search, experience and credence goods. Journal of Economic Studies, 22(2), 33-43.
    15. Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415-430.
    16. Festinger, L. A Theory of Cognitive Dissonance. Evanston, IL: Row & Peterson, 1957.
    17. Fleder, D., & Hosanagar, K. (2009). Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Management science, 55(5), 697-712.
    18. Frederick, F. R., & Sasser, W. E. (1990). Zero defections: quality comes to services. Harvard Business Review, 68(5), 105.
    19. Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N & Sriram, S. (2006). Modeling customer lifetime value. Journal of Service Research, 9(2), 139-155.
    20. Gupta, S., & Kim, H. W. (2007). The moderating effect of transaction experience on the decision calculus in on-line repurchase. International Journal of Electronic Commerce, 12(1), 127-158.
    21. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis: a Global Perspective, Pearson. New Jersey.
    22. Hernández, B., Jiménez, J., & Martín, M. J. (2010). Customer behavior in electronic commerce: The moderating effect of e-purchasing experience. Journal of Business Research, 63(9), 964-971.
    23. Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in belief updating: The belief-adjustment model. Cognitive psychology, 24(1), 1-55.
    24. Huang, P., Lurie, N. H., & Mitra, S. (2009). Searching for experience on the web: an empirical examination of consumer behavior for search and experience goods. Journal of Marketing, 73(2), 55-69.
    25. Hughes, A. M. (2001). Strategic Database Marketing: The masterplan for starting and managinga profitable, customer-based marketing program. McGraw-Hill.
    26. Kalakota, R., & Robinson, M. (2001). E-business 2.0: Roadmap for Success. Addison-Wesley Professional.
    27. Kamakura, W. A., Wedel, M., De Rosa, F., & Mazzon, J. A. (2003). Cross-selling through database marketing: a mixed data factor analyzer for data augmentation and prediction. International Journal of Research in marketing, 20(1), 45-65.
    28. Kim, M. S., & Ahn, J. H. (2007). Management of trust in the e-marketplace: the role of the buyer's experience in building trust. Journal of Information Technology, 22(2), 119-132.
    29. Koo, D. M. (2006). The fundamental reasons of e-consumers’ loyalty to an online store. Electronic Commerce Research and Applications, 5(2), 117-130.
    30. Korgaonkar, P., Silverblatt, R., & Girard, T. (2006). Online retailing, product classifications, and consumer preferences. Internet Research, 16(3), 267-288.
    31. Kotler, P., Keller, K. L., Ancarani, F., & Costabile, M. (2014). Marketing management 14/e. Pearson.
    32. Kumar, V., Venkatesan, R., Bohling, T., & Beckmann, D. (2008). Practice prize report-The power of CLV: Managing customer lifetime value at IBM. Marketing Science, 27(4), 585-599.
    33. Kwon, W. S., & Lennon, S. J. (2009). What induces online loyalty? Online versus offline brand images. Journal of Business Research, 62(5), 557-564.
    34. Lee, S., Lee, S., & Park, Y. (2007). A prediction model for success of services in e-commerce using decision tree: E-customer’s attitude towards online service. Expert Systems with Applications, 33(3), 572-581.
    35. Ling, K. C., Chai, L. T., & Piew, T. H. (2010). The effects of shopping orientations, online trust and prior online purchase experience toward customers’ online purchase intention. International Business Research, 3(3), p63.
    36. Liao, C., Liu, C. C., & Chen, K. (2011). Examining the impact of privacy, trust and risk perceptions beyond monetary transactions: An integrated model. Electronic Commerce Research and Applications, 10(6), 702-715.
    37. Liu, R. Y., Yang, L., Wei, K. K., & Chen, H. (2009). Consumers' repurchase probability in online marketplace: A belief updating perspective. AMCIS 2009 Proceedings, 483.
    38. Luo, J., Ba, S., & Zhang, H. (2012). The Effectiveness of Online Shopping Characteristics and Well-Designed Websites on Satisfaction. Mis Quarterly,36(4), 1131-1144.
    39. Manning, H.; Bodine, K.; Temkin, B.D.; and Amato, M. Best and worst of site design. Forrester Research, Cambridge, MA (March 2005)(www.forrester.com/Research/Document/Excerpt/0,7211,36074,00.html).
    40. McNee, S. M., Riedl, J., & Konstan, J. A. (2006, April). Being accurate is not enough: how accuracy metrics have hurt recommender systems. CHI'06 extended abstracts on Human factors in computing systems (pp. 1097-1101). ACM.
    41. Mittal, V., & Kamakura, W. A. (2001). Satisfaction, repurchase intent, and repurchase behavior: Investigating the moderating effect of customer characteristics. Journal of Marketing Research, 38(1), 131-142.
    42. Oliver, R. L. (1999). Whence consumer loyalty? The Journal of Marketing, 33-44.
    43. Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: A moderating role of product type. Journal of Business research,62(1), 61-67.
    44. Park, S. H., & Han, S. P. (2013). From accuracy to diversity in product recommendations: Relationship between diversity and customer retention. International Journal of Electronic Commerce, 18(2), 51-72.
    45. Pathak, B., Garfinkel, R., Gopal, R. D., Venkatesan, R., & Yin, F. (2010). Empirical analysis of the impact of recommender systems on sales. Journal of Management Information Systems, 27(2), 159-188.
    46. Paul, P., Pennell, M. L., & Lemeshow, S. (2013). Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Statistics in medicine, 32(1), 67-80.
    47. Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20.
    48. Su, K. W., Wang, J. W., & Hsu, M. H. (2012). The impact of prior experience on shopping behaviors. Journal of the Chinese Institute of Industrial Engineers,29(6), 400-416.
    49. Swan, J. E., & Nolan, J. J. (1985). Gaining customer trust: a conceptual guide for the salesperson. Journal of Personal Selling & Sales Management, 5(2), 39-48.
    50. Wang, J. W., & Wu, H. L. (2011, July). Understanding Repeat Purchase Intentions And Uncertainty In The Context Of Online Shopping. PACIS (p. 207).
    51. Weathers, D., Sharma, S., & Wood, S. L. (2007). Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods. Journal of Retailing, 83(4), 393-401.
    52. Zhang, Y., Fang, Y., Wei, K. K., Ramsey, E., McCole, P., & Chen, H. (2011). Repurchase intention in B2C e-commerce—A relationship quality perspective. Information & Management, 48(6), 192-200.

    中文文獻
    1. 資策會 (2013),台灣網友網路購物行為調查,資策會(MIC)AISP情報顧問服務資料庫。
    2. 資策會 (2014),台灣網友網路購物行為調查,資策會(MIC)AISP情報顧問服務資料庫。
    3. 資策會 (2014),2013網路商店經營現況,資策會(MIC)AISP情報顧問服務資料庫。
    4. 資策會 (2014),電子商務市場與下世代應用趨勢前瞻,資策會(MIC)AISP情報顧問服務資料庫。
    5. 資策會 (2014),電子商務雲端創新應用與基礎環境建置計畫。
    6. 資策會 (2015),電子商務產業回顧與展望,資策會(MIC)AISP情報顧問服務資料庫。
    7. 何靖遠, 陳慧玲, & 廖致淵. (2014). 線上消費者平台再購行為的 RFM 預測模型-以 Yahoo! 奇摩拍賣女裝為例. Journal of Data Analysis, 9(1), 1-23.
    8. EagleEye鷹眼數據 (2014),2014年第四季台灣購物網站排行榜。
    9. 財團法人台灣網路資訊中心 (2014),2014年台灣網寬頻網路使用調查報告,取自http://www.twnic.net.tw/download/200307/20140820e.pdf。

    QR CODE
    :::