跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊博安
Po-an Chuang
論文名稱: 金屬有機氣相沉積反應腔體之熱流場與質傳數值模擬分析
指導教授: 陳志臣
Jyh-chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 金屬有機氣相沉積法熱流場與質傳數值模擬
外文關鍵詞: Metal-organic chemical vapor deposition, MOCVD
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    有機金屬化學氣相沉積法(MOCVD)是發光二極體(LED)製程中,生長半導體薄膜的一種方法,而膜厚的均勻性與成長速率攸關LED效率與品質。本研究採用VEECO E400LDM垂直式反應腔體進行模擬,並探討狹長式入口分佈及熱流場與物質傳輸現象。
    本研究首先建立化學反應機制,當三甲基鎵(TMG)與氨氣分別通入反應腔體時,三甲基鎵與氨氣會隨著溫度變化產生一連串不同的反應路徑,本研究製程溫度為1000K為質量傳輸限制的條件下,沉積速率取決於氣相反應中三甲基鎵(TMG)的熱裂解,裂解成雙甲基鎵(DMG)與單甲基鎵(MMG),在基板面上反應速率為單甲基鎵(MMG)遠快於DMG與TMG, 因此藉由Fick’s law 計算MMG的沉積速率。
    接著本研究假設氨氣已均勻混合的情況下通入載流氣體與三甲基鎵,探討排列狹縫式入口的數量、狹縫式入口的寬度、狹縫式入口對應載盤的範圍。我們發現(1)當狹縫入口少於11條時,入口與入口間會有迴流產生(2)流量固定下,入口寬度改變時,對均勻性影響不大(3)當狹縫是入口範圍對應載盤向內縮時,整體成長速率提升,較均勻的區域以縮至直徑範圍0.43m均勻性為最佳。
    接著將狹縫入口分區段,入口分別通入載流氣體、TMG與氨氣,探討氣體混合的機制,由於載流氣體的密度與氨氣相差很大,所以我們必須調整進氣口流速使腔體內的流場均勻。當整體流速變小或入口溫度提高時,有助於提升反應氣體間擴散與均勻性。當載盤轉速增加時,對旋轉半徑大的區域速度越快,均勻的效果較好,載盤中心則受到停滯流影響,濃度較無法受旋轉氣流帶開。
    經過本研究探討,若要提升均勻性除了必須達到流場均勻外,必須提升反應氣體間的擴散作用,使反應氣體均勻分佈在載盤上。


    Abstract
    Metal organic chemical vapor deposition (MOCVD) manufacturing process of light emitting diode (LED) is a method of growing thin film on semiconductor. The uniformity of the film thickness is relevant to LED efficiency and quality. This study uses VEECO E400LDM vertical reaction chamber model to simulate and investigate the arrangement of slot jet as well as thermal-fluidic fields and mass transfer phenomena.
    This study first built the mechanism of chemical reaction. When TMG and Ammonia gas were introduced into the reaction chamber individually, TMG and Ammonia were to react and generated a series of different reaction paths vary with temperature. In this study, the process temperature is 1000K in the mass transfer limited region. The deposition rate depends on TMG decomposition in gas phase reaction. TMG will decompose to DMG and MMG. The reaction rate of MMG is far faster than TMG and DMG in the surface of substrate. Therefore we calculated MMG deposition rate by Fick’s law.
    Then, we assumed that ammonia has been mixed uniformly. TMG and carrier gas introduced in the chamber have investigated the number of slot jet arrangement and the wide as well as the range of slot jet corresponding to the load plate. This study found (1) When the slot jet is less than 11, it will generate the recirculation between the inlet. (2) As the width of the inlet is changed, there is the minimal effect on the uniformity in constant flow rate. (3) Since the range of slot corresponds to the load plate inward contraction, the growth rate will increase as contracting with 0.43m in diameter uniformity considered as the best one.
    After that, we partition off the slot jet in sections. The entrances were introduced into the carrier gas, TMG and ammonia, then investigated the mechanism of gas mixture. Because the density of the carrier gas has big difference with ammonia, we have to adjust the flow rate of the inlet to make the uniform flow field. When the overall flow rate is decreased or the inlet temperature increases, will enhance the diffusion between the reaction gas and uniformity. In addition, when the load plate speed is increased, the speed in the large radius of rotation region is much faster. Therefore, the uniformity is better. The growth rate of load plate center is higher due to flow stagnation point.
    According to this study, in order to obtain better uniformity, not only the flow field must be uniform but also improve the diffusion of the reaction gas, let the reaction gas distributed uniformly on the load plate.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1研究背景 1 1-2MOCVD反應腔體種類 2 1-3薄膜沉積過程 3 1-4文獻回顧 4 1-5研究動機與目的 8 第二章 研究方法 14 2-1 數學模型 14 2-1-1 統御方程式 14 2-1-2 邊界條件 16 2-2混合氣體之物理特性 16 2-3化學反應方程與沉積速率 18 2-4無因次參數 20 2-5 有限元素法(finite element method) 21 2-6數值模擬流程 22 2-7 網格建立與收斂公差測試 23 第三章 結果與討論 31 3-1狹縫入口的擺設與分佈 31 3-1-1狹縫入口的擺設數量 31 3-1-2 狹縫入口的寬度 32 3-1-3 狹縫入口對應載盤的範圍 32 3-2 混合氣體機制與製程參數探討 32 3-2-1慣性力匹配 33 3-2-2調整進氣口流量 34 3-2-3改變入口分段與入口物種排列方式 34 3-2-4調整入口溫度 35 3-2-5調整載盤轉速 35 第四章 結論與未來研究方向 71 4-1 結論 71 4-2 未來研究方向 72 參考文獻 73

    [1] 經濟部能源,LED照明節能應用技術手冊,財團法人台灣綠色生產力基金會(2011).
    [2] A.G. Thompson, “MOCVD technology for semiconductors”, Journal of Materials letters, Vol. 30, pp 255-263 (1996).
    [3] M. Dauelsberg, E.J. Thrush, B. Schineller and J. Kaeppeler, “Technology of MOVPE Production Tools”, Elsevier Ltd (2004).
    [4] L. Kadinski, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A. Galyukov, Yu. Makatov, “Computation analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors”, Journal of Crystal Growth, Vol 261, pp 175-181 (2004).
    [5] K.F. Jensen, “Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy”, Journal of Crystal Growth, Vol. 102, pp 441-470 (1990).
    [6] W.K. Cho, D.H. Choi, M.U. Kim,“Optimization of the inlet velocity profile for uniform epitaxial growth in a vertical metalorganic chemical vapor deposition reactor”, Heat and Mass Transfer, Vol. 42, pp 4143-4152 (1999).
    [7] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters”, Journal of Crystal Growth, Vol 287, pp 656-663 (2005).
    [8] B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E.A. Armour, L. Kadinski, A. Gurary, “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors”, Journal of Crystal Growth, Vol. 289, pp 708-714 (2006).
    [9] B. Mitrovic, A. Gurary, W. Quinn, “Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling”, Journal of Crystal Growth, Vol. 303, pp 323-329 (2007).
    [10] C.H. Lin, W.T. Cheng, J.H. Lee “Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling” , Journal of International Communications in Heat and Mass Transfer, Vol. 36, pp 680-685 (2009).
    [11] C.Y. Shin, B.J. Baek, C.R. Lee, B. Pak, J.M. Toon, K.S. Park, “Numerical analysis for the growth of GaN layer in MOCVD”, Journal of Crystal Growth, Vol. 247, pp 301-312 (2003).
    [12] J.C. Hsieh, T.C. Cheng, T.F. Lin, “Characteristics of vortex flow in a low speed air jet impinging onto a heated disk in a vertical cylindrical chamber” Journal of Heat and Mass Transfer, Vol. 46, pp 4639-4656 (2003).
    [13] R. Zuo, H. Zhang, X.L. Liu, “Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets”, Journal of Crystal Growth, Vol. 293, pp 498-508 (2006).
    [14] L. Yang, Z. Chen, J. Zhang, and A.G. Li, “Transport Phenomena in a Novel Large MOCVD Reactor for Epitaxial Growth of GaN Thin films ”, Journal of IEEE Transactions On Semiconductor Manufacturing, Vol. 25, pp NO.1 (2012).
    [15] C. Theodoropoulos, T.J. Mountziaris, H.K. Moffat, J. Han, “Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy”, Journal of Crystal, Vol. 217, pp 65-81 (2000).
    [16] R.P. Pawlowski, C. Theodoropoulos, A.G. Salinger, T.J. Mountziaris, H.K. Moffat, J.N. Shadid, E.J. Thrush “Fundamental models of the metalorganic vapor-phase epitaxy of gallium nitride and their use in reactor design”, Journal of Crystal Growth, Vol.221, pp 622-628 (2000).
    [17] D. Sengupta, S. Mazumder, W. Kuykendall, S.A. Lowry, “On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters”, Journal of Crystal Growth, Vol. 279, pp. 369-382 (2005)
    [18] H. Tokoi, A. Ohtake, K. Tago, K. Watanabe, and T. Mishima, “Development of GaN Growth Reaction Model Using Ab initio Molecular Orbital Calculation and Computational Fluid Dynamics of Metalorganic Vapor-Phase Epitaxy”, Journal of The Electrochemical Sociey, Vol. 159, pp 270-275 (2012).
    [19] R. Zuo, H. Yu, N. Xu, and X. He, “Influence of Gas Mixing and Heating on Gas-phase Reactions in GaN MOCVD Gowth” , ESC Journal of Solid State Science and Technology, Vol. 1, pp 46-53 (2012).

    QR CODE
    :::