跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許朝翔
Chao-Hsiang Hsu
論文名稱: 利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作用機制
Isothermal Titration Calorimetric Studies of the Non-fouling Interaction Mechanism Between Proteins and Polyethyleneglycol
指導教授: 陳文逸
Wen-yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 聚乙二醇恆溫滴定微卡計稀釋焓恆溫吸附曲線
外文關鍵詞: isotherm, enthalpy of dilution, isothermal titration calorimetry, polyethylene glycol
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於聚乙二醇(polyethylene glycol or PEG)可以抵抗蛋白質的吸附,因此其擁有很好的生物相容性。目前已有相當多種聚乙二醇以及其相關的衍生物,被運用於各種不同的研究與應用的領域。然而聚乙二醇抗蛋白質吸附的作用機制尚未明確。我們認為由於聚乙二醇擁有良好的水合能力,具有從鄰近的水層優先排出其他生物分子的特性,因此可以有效的抵抗蛋白質的吸附。對於此機制在熱力學上的相關資訊並未被提出,因此在本次研究中,我們利用恆溫滴定微卡計在不同的鹽濃度、鹽離子、溫度以及不同PEG分子量等環境下,量測聚乙二醇的稀釋焓以及其與蛋白質之間的吸附焓。藉此來探討不同環境對於聚乙二醇水合能力的影響以及對聚乙二醇與蛋白質之間吸附行為的影響。
    在稀釋焓結果方面,所有的稀釋焓都呈現放熱的結果,代表聚乙二醇分子在本研究當中所使用的不同溶液環境(包括不同鹽濃度、鹽種類、溫度及不同PEG分子量)下,均較傾向水合的狀態。其中在鹽濃度、溫度以及PEG分子量效應中,發現聚乙二醇水合能力會隨著溶液中的鹽濃度、溫度或者PEG分子量的提升而降低,從能量觀點上來說,在高鹽、高溫或高PEG分子量環境下,稀釋PEG為較不energy favorable的程序。而在鹽離子效應方面,發現影響PEG水合能力的離子序列符合了Hofmeister series。另外,我們發現Flory-Huggins parameter(χ12)在各種環境下的值均為負值,代表着聚乙二醇與水溶劑分子作用良好。
    從恆溫吸附曲線的結果來看,當額外添加鹽類時,則降低了溶菌酶(lysozyme)吸附在Toyopearl Ether-650s上的吸附量以及吸附親合力。推測溶菌酶吸附於Ether-650過程中,除了疏水作用力外,靜電作用力的貢獻也必須考慮。此外,隨著溶液中鹽濃度或溫度的提升,溶菌酶與Ether-650間的吸附親合力有增加的趨勢。主要原因來自於溶菌酶與Ether-650間疏水作用力的提升。而在鹽離子效應方面,其影響溶菌酶吸附程度的序列也符合Hofmeister series。
    在吸附焓的研究方面,在不同的鹽濃度、鹽種類及溫度環境下,溶菌酶與Ether-650間的吸附焓大多呈現吸熱,表示在吸附過程中大多為去水合的程序所主導。而在高鹽之1M KCl(25℃)下的溶液環境則呈現放熱,在此環境下溶菌酶的吸附則為焓驅動的非典型的疏水作用。在鹽離子的效應方面,發現添加銨鹽離子的溶液中,吸附焓的吸熱量較添加其他鹽類離子大。此外本研究也利用P.I. Model來計算在添加不同鹽類離子溶液下的吸附過程中,整體系統去水合的量。結果發現:(1)在添加銨鹽的溶液環境下,整體溶液系統去水合的量較鉀鹽的溶液環境下多。(2)對於溶菌酶與聚乙二醇吸附的系統而言,其吸附過程中去水合的量相較於文獻當中,溶菌酶與疏水觸手(如,C4,C8分子)吸附的系統還要來的少。從此點也證明聚乙二醇相較於其他非極性分子而言,其擁有較強大的水合能力,而此特性也是抵抗蛋白質吸附的重大因素之一。


    The characteristics of preventing nonspecific adsorption of protein has lead to extensive usage of PEG and its derivatives for biomedical applications. We consider that the interaction of water with the PEG is a major determinant of preventing protein adsorption. However, the thermodynamics aspect of the mechanism has not been well addressed. Therefore, in this study, we described the hydration behavior of PEG by measuring the dilution heat of PEG with various salt concentration, types of salt ions, temperature and molecular weight of PEG. In addition, we measured the isotherms and the interaction enthalpy between protein and Ether-650S with various salt concentrations, salt types and temperature by batch isotherms and ITC.
    From the results of dilution heat, we observed that all the dilution heat are exothermic at all condition (i.e. salt conc. and types, temperature, PEG MW). It indicated that the PEG molecule is prefer to hydrate with water than aggregation in the conditions investigated. At high salt concentration, temperature and molecular weight of PEG, the dilution heat of PEG is less exothermic due to the poor hydration of PEG. In thermodynamics, the dilution of PEG is more energy unfavorable at high salt concentration, temperature and molecular weight of PEG. And the extent of salt ions which affect the hydration of PEG is consistent with the Hofmeister series. Besides, we also observed that all the values of Flory-Huggins parameter(χ) are negative at each condition. It also indicated that all the solvent which we used are good solvent for PEG.
    From the results of isotherm, the amount of lysozyme adsorb on Ether-650 will decrease with increase the salt concentration. We considered that both of hydrophobic and electrostatic interaction affect the binding affinity of lysozyme.
    The enthalpy of lysozyme adsorbed on Ether-650S are almost endothermic. It indicated that the hydrophobic force is the driving force during the adsorption process. However, the enthalpy of adsorption is exothermic at 1M KCl. This lead to the suggestion that the adsorption of lysozyme with the Ether-650 is of the “nonclassical” hydrophobic type interaction at 1M KCl. In this study, we also calculated the number of water molecules released during the adsorption by preferential interaction model. From the results of P.I Model, we can conclude : (1) when we adding
    ammonium chloride to the solution, the system released more water molecules than add that of potassium chloride during the binding process.(2)compare with literature data, PEG ligand have stronger capability of hydration than other hydrophobic ligands.

    中文摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 第二章 文獻回顧 3 2.1 聚乙二醇的簡介與應用 3 2.2 蛋白質與聚乙二醇間存在的交互作用力 7 2.2.1 凡得瓦力 7 2.2.2 立體排斥力(Steric Repulsion Force) 10 2.2.3 疏水作用力 12 2.2.4 其他作用力 13 2.3 Kosmotrpoe and Chaotrope 14 2.4 Hofmeister series 17 2.5 蛋白質與聚乙二醇的吸附機制 18 2.6 其他影響蛋白質吸附機制的因素 21 2.6.1 聚乙二醇觸手鏈長及種類之影響 22 2.6.2 聚乙二醇於表面構形之影響 24 2.6.3 蛋白質種類之影響 28 2.6.4 鹽濃度及鹽種類之影響 30 2.7 恆溫滴定微卡計 33 2.7.1 VP-ITC的介紹 33 2.7.2 Flory-Huggins Theory於稀釋焓上的應用 36 2.7.3利用恆溫滴定微卡計研究吸附行為 37 第三章 實驗藥品、儀器及方法 40 3.1 實驗藥品 40 3.2 儀器設備 42 3.3 實驗方法 43 3.3.1 等溫吸附線的量測 43 3.3.1.1 BCA Protein assay Kit操作步驟 44 3.3.2 vp-ITC操作步驟 46 3.3.3 稀釋焓量測 48 3.3.4 吸附焓的量測 48 第四章 結果與討論 49 4.1 聚乙二醇稀釋焓的量測 49 4.1.1 鹽類效應 49 4.1.2 溫度效應 56 4.1.3 Flory-Huggins作用參數的分析 65 4.2 蛋白質與聚乙二醇間交互作用的研究 69 4.2.1恆溫吸附曲線的量測 69 4.2.1.1 鹽類效應 71 4.2.1.2 溫度效應 77 4.2.2 吸附驅動力的探討 81 4.2.3 吸附焓的量測 82 4.2.3.1 鹽類效應 82 4.2.3.2 溫度效應 92 第五章 結論 94 第六章 參考文獻 98

    1. Harris, J. M. “Poly(ethylene glycol) chemistry
    biotechnical and biomedical applications”, New York
    Plenum Press c1992, p1-12
    2. Dolan A. K. and Edwards S. F. “The effect of excluded
    volume on polymer dispersant action”, Proc. R. Soc.
    Lond. A. 343(1975) 427-442
    3. Hermans J. “Excluded-volume theory of polymer–protein
    interactions based on polymer chain statistics”, J
    Chem Phys 77(1982) 2193-2203
    4. Queriroz J. A., Garcia F. A. P. and Cabral J. M. S.
    “Hydrophobic interaction chromatography of
    Chromobacterium viscosum lipase on polyethylene glycol
    immobilized on Sepharose”, Journal of chromatography
    A. 734(1996) 213-219
    5. Fee C. J. and Van Alstine J. M. “PEG-proteins:Reaction
    engineering and separation issues”, Chemical
    Engineering Science 61(2006) 924-939
    6. Nie F. Q., Xu Z. K., Ye P., Wu J. and Seta P. “
    Acrylonitrile-based copolymer membranes containing
    reactive groups:effects of surface-immobilized poly
    (ethylene glycol)s on anti-fouling properties and blood
    compatibility”, Polymer 45(2004) 399-407
    7. Fan X. W., Lin L. J. and Messersmith P. B. “ Cell
    Fouling Resistance of Polymer Brushes Grafted from Ti
    Substrates by Surface-Initiated Polymerization:Effect
    of Ethylene Glycol Side Chain Length”,
    Biomacromolecules 7(2006) 2443-2448
    8. Abuchowski A., van Es T., Palczuk N. C. and Davis F. F.
    “Alteration of immunological properties of bovine serum
    albumin by covalent attachment of polyethylene
    glycol”, J. Biol. Chem. 252(1977)3578-3581
    9. Roberts M. J., Bentley M. D. and Harris J. M.
    “Chemistry for peptide and protein PEGylation”,
    Advanced Drug Delivery Reviews 54(2002) 459-476
    10. Zhang M. Q., Desai T. and Ferrari M. “Proteins and
    cells on PEG immobilized silicon surfaces”,
    Biomaterials 19(1998) 953-960
    11. Sharma S., Johnson R. W. and Desai T. A. “XPS and AFM
    analysis of antifouling PEG interfaces for
    microfabricated silicon biosensors” Biosensors and
    Bioelectronics 20(2004) 227-239
    12. Farruggia B., Nerli B. and Picó G. “Study of the
    serum albumin-polyethyleneglycol interaction to
    predict the protein partitioning in aqueous two-phase
    systems”, Journal of Chromatography B 798(2003) 25-33
    13. Halperin A. “Polymer Brushes that Resist Adsorption
    of Model Proteins: Design Parameters”, Langmuir 15
    (1999) 2525-2533
    14. Napper D. H. and Netschey A. “Studies of the steric
    stabilization of colloidal particles”, Journal of
    Colloid and Interface Science 37(1971)528-535
    15. Leckband D., Sheth S. and Halpern A. “Grafted poly
    (ethylene oxide) brushes as nonfouling surface
    coating”, J. Biomater. Sci. Polymer Edn. 10(1999)
    1125-1147
    16. Hunter R. “Foundations of Colloid Science”, vol. I,
    Oxford Science Publications, New York, 1989.
    17. Dill K. A. “Dominant forces in protein folding”,
    Biochemistry 29(1990) 7133-7155
    18. Makhatadze G. I. and Privalov P. L. “Energetics of
    protein-structure”, Adv. Protein Chem. 47(1995) 307-
    425
    19. Bruinsma G. M., van der Mei H. C. and Busscher H. J.
    “Bacterial adhesion to surface hydrophilic and
    hydrophobic contact lenses”,Biomaterials 22(2001)
    3217.
    20. Farruggia B., Garcia G., D''Angelo C. and Picó G.
    “Destabilization of human serum albumin by
    polyethylene glycols studied by thermodynamical
    equilibrium and kinetic approaches”, International
    journal of biological Macromoleculaes 20(1997) 43-51
    21. Herold D. A., Keil K.and Bruns D. E. “Oxidation of
    polyethylene glycols by alcohol dehydrogenase”,
    Biochem. Pharm. 38(1989) 73-76.
    22. Hribar B., Southall N. T., Vlachy V. and Dill K. A.
    “How ions affect the structure of water”, J. Am.
    Chem. Soc. 124(2002) 12302-12311
    23. Dill K. A., Truskett T. M., Vlachy V. and Hribar-Lee
    B. “Modeling water, the hydrophobic effect, and ion
    salvation”, Annu. Rev. Biophys. Biomol. Struct. 34
    (2005) 173-199
    24. Robinson RA and Stokes RH. Electrolyte
    Solutions.NewYork:Dover (2002) p571
    25. Samoilov O. Y. “A new approach to the study of
    hydration of ions in aqueous solutions.”Discuss.
    Faraday Soc. 24(1957) 141-146
    26. Hofmeister F. “Zur Lehre von der Wirkung der Salze”,
    Arch. Exp. Pathol. Pharmakol. 24(1888) 247-260
    27. Szlifer I. “Protein Adsorption on Surfaces with
    Grafted Polymers:A Theoretical Approach”, Biophys J.
    72(1997) 595-612
    28. Szlifer I. “Polymers and proteins: interactions at
    interfaces”, Curr.Opin. Solid State Mater. Sci. 2
    (1997) 337-344
    29. Szlifer I. “Protein adsorption on tethered polymer
    layers:effect of polymer chain architecture and
    composition”, Physica A. 244(1997)370-388
    30. Feldman K., Hahner G., Spencer N. D., Harder P. and
    Grunze M. “Probing Resistance to Protein Adsorption
    of Oligo(ethylene glycol)-Terminated Self-Assembled
    Monolayers by Scanning Force Microscopy”, J. Am.
    Chem. Soc. 121(1999) 10134-10141.
    31. Harder P., Grunze M., Dahint R., Whitesides G. M. and
    Laibinis P. E. “Molecular Conformation in Oligo
    (ethylene glycol)-Terminated Self- Assembled
    Monolayers on Gold and Silver Surfaces Determines
    Their Ability To Resist Protein Adsorption”, Phys.
    Chem. B. 102(1998) 426-436.
    32. Wang, R. L. C., Kreuzer, H. J. and Grunze, M.“
    Molecular Conformation and Solvation of Oligo(ethylene
    glycol)-Terminated Self-Assembled Monolayers and Their
    Resistance to Protein Adsorption”, J. Phys. Chem. B.
    101(1997) 9767-9773.
    33. Kane R. S., Deschatelets P. and Whitesides G. M.
    “Kosmotropes Form the Basis of Protein-Resistant
    Surfaces”, Langmuir 19(2003) 2388-2391
    34. Yancey P.H., Clark M. E., Hand S. C., Bowlus R. D. and
    Somero G. N. “Living with water stress: evolution of
    osmolyte systems”, Science 217(1982) 1214-1222.
    35. Timasheff S. N. “Control of protein stability and
    reactions by weakly interacting cosolvents: the
    simplicity of the complicated.” Adv. Protein Chem. 51
    (1998) 355-432
    36. Shulgin I. L. and Ruckenstein E. “Preferential
    hydration and solubility of proteins in aqueous
    solutions of polyethylene glycol”, Biophysical
    Chemistry 120(2006) 188-198
    37. Lazos D., Franzka S. and Ulbricht M. “Size-Selective
    Protein Adsorption to Polystyrene Surfaces by Self-
    Assembled Grafted Poly(ethylene Glycols) with Varied
    Chain Lengths”, Langmuir 21(2005) 8774-8784
    38. McPherson T., Kidane A., Szleifer I. and Park K.
    “Prevention of Protein Adsorption by Tethered Poly
    (ethylene oxide) Layers: Experiments and Single-Chain
    Mean-Field Analysis”, Langmuir 14(1998) 176-186
    39. Li L. Y., Chen S. F., Zheng J., RatnerB. D. and Jiang
    S. “Protein Adsorption on Oligo(ethylene glycol)-
    Terminated Alkanethiolate Self-Assembled Monolayers:
    The Molecular Basis for Nonfouling Behavior”, J.
    Phys. Chem. B 109(2005) 2934-2941
    40. Schroen C. G. P. H., Stuart M. A. C., van der Voort
    Maarschalk K.,van der Padt A. and van''t Riet K.
    “Influence of Preadsorbed Block Copolymers on Protein
    Adsorption: Surface Properties, Layer Thickness, and
    Surface Coverage”, Langmuir 11(1995) 3068-3074
    41. Vermette P. and Meagher L. “Interactions of
    phospholipid- and poly(ethylene glycol)-modified
    surfaces with biological systems: relation to physico-
    chemical properties and mechanisms”, Colloids and
    Surfaces B: Biointerfaces 28(2003) 153-198
    42. Sofia S. J., Premnath V. and Merrill E. W. “Poly
    (ethylene oxide) Grafted to Silicon Surfaces: Grafting
    Density and Protein Adsorption”, Macromolecules 31
    (1998) 5059-5070
    43. Queiroz J. A., Garcia F. A. P., Cabral J. M. S.
    “Hydrophobic interaction chromatography of
    Chromobacterium viscosum lipase on polyethylene
    glycol immobilized on Sepharose”, Journal of
    Chromatography A 734 (1996) 213-219
    44. Wang R. W., Zhang Y., Ma G. H., Su Z. G. “
    Modification of poly(glycidyl methacrylate–
    divinylbenzene) porous microspheres with polyethylene
    glycol and their adsorption property of protein”,
    Colloids and Surfaces B: Biointerfaces 51(2006) 93-99
    45. Ladbury J. E. “Application of Isothermal Titration
    Calorimetry in the Biological Sciences: Things Are
    Heating Up!”, BioTechniques 37(2004) 885-887.
    46. Safronov A. P. and Zubarev A. Y. “Flory-Huggins
    parameter of interaction in polyelectrolyte solutions
    of chitosan and its alkylated derivative”, polymer 43
    (2002) 743-748
    47. Gedde U. W. “Polymer physics”, London New York
    Chapman & Hall 1995, p64
    48. Lin F. Y., Chen W. Y., Ruaan R. C. and Huang H. M.
    “Microcalorimetric Studies of Interactions between
    Proteins and Hydrophobic Ligandsin Hydrophobic
    Interaction Chromatography: Effects of Ligand Chain
    Length, Density and the Amount of Bound Protein”,
    Journal of Chromatography A 872(2000) 37-47
    49. Huang H. M., Lin F. Y., Chen W. Y. and Ruaan R. C.
    “Isothermal Titration Microcalorimetric Studies of the
    Effect of Temperature on Hydrophobic Interaction
    between Proteins and Hydrophobic Adsorbents”, Journal
    of colloid and Interface Science 229(2000) 600-606
    50. Richards E. G. “An Introduction to Physical
    Properties of Large Molecules in Solutoin”, Cambridge
    University Press: Cambridge,1980
    51. Harris J. M. and Zalipsky S. “Poly(ethylene glycol)
    Chemistry and Biological Application”, Washington,
    DC : American Chemical Society c1997,Chapter 2
    52. Mooney J. F., Hunt A. J., McIntosh J. R., Liberko C.
    A., Walba D. M. and Rogers C. T. “Patterning of
    functional antibodies and other proteins by
    photolithography of silane monolayers”, Proc. Natl.
    Acad. Sci. USA. 93(1996) 12287-12291
    53. Maurya N. S. and Mittal A. K. “Applicability of
    Equilibrium Isotherm Models for the Biosorptive
    Uptakes in Comparison to Activated Carbon-Based
    Adsorption”, Journal of environment engineering. 132
    (2006) 1589-1599
    54. Shimomura O., Flood P. R., Inouye S., Bryan B. and
    Shimomura A. “Isolation and Properties of the
    Luciferase Stored in the Ovary of the Scyphozoan
    Medusa Periphylla periphylla”, Biol. Bull. 201(2001)
    339-347
    55. Ceccaroli P., Cardoni P., Buffalini M., De Bellis R.
    and Piccoli G. “Separation of hexokinase activity
    using different hydrophobic interaction supports”,
    Journal of chromatography B. 702(1997) 41-48
    56. McHenry C. S., Seville M. and Cull M. G. “A DNA
    Polymerase III Holoenzyme-like Subassembly from an
    Extreme Thermophilic Eubacterium”, J. Mol. Biol. 272
    (1997) 178-189
    57. van Oss C. J., Good R. J. and Chaudhury M. K. “Nature
    of the antigen-antibody interaction: Primary and
    secondary bonds: Optimal conditions for association
    and dissociation”, Journal of Chromatography B 376
    (1986) 111-119
    58. Arnulphi C., Jin L. H., Tricerri M. A. and Jonas A.
    “Enthalpy-Driven Apolipoprotein A-I and Lipid Bilayer
    Interaction Indicating Protein Penetration upon Lipid
    Binding”, Biochemistry 43(2004) 12258-12264
    59. Seelig J. and Ganz P. “Nonclassical Hydrophobic
    Effect in Membrane Binding Equilibria”, Biochemistry
    30(1991) 9354-9359
    60. Lightfoot E. N., Perkins T. W., Mak D. S. and Root T.
    W. “Protein retention in hydrophobic interaction
    chromatography:modeling variation with buffer ionic
    strength and column hydrophobicity”, Journal of
    chromatography A 766(1997) 1-14
    61. Pavey K. D. and Olliff C. J. “SPR analysis of the
    total reduction of protein adsorption to surfaces
    coated with mixtures of long- and short-chain
    polyethylene oxide block copolymers”, Biomaterials 20
    (1999) 885-890
    62. Ding H. M., Shao L., Liu R. J., Xiao Q. G. and Chen J.
    F. “Silica nanotubes for lysozyme immobilization”,
    Journal of Colloid and Interface Science 290(2005) 102-
    106
    63. Woodle M. C. “Controlling liposome blood clearance by
    surface-grafted polymers”, Advanced Drug Delivery
    Reviews 32(1998) 139-152
    64. Jeon S. I., Lee J. H., Andrade J. D. and de Gennes P.
    G. “Protein-surface interactions in the presence of
    polyethylene oxide”, J. Colloid Interface Sci. 142
    (1991) 149-158
    65. Ostuni E., Chapman R. G., Holmlin R. E., Takayama S.
    and Whitesides G. M. “A Survey of Structure-Property
    Relationships of Surfaces that Resist the Adsorption
    of Protein”, Langmuir 17(2001) 5605-5620
    66. Vailaya A. and Horváth C. “Solvophobic theory and
    normalized free energies of nonpolar substances in
    reversed phase chromatography”, J. Phys. Chem. B 101
    (1997) 5875-5888
    67. Tasaki K. “Poly(oxyethylene)-Water Interactions: A
    Molecular Dynamics Study”, J. Am. Chem. Soc. 118
    (1996) 8459-8469

    QR CODE
    :::