| 研究生: |
蔡尚祐 Shang-yu Tsai |
|---|---|
| 論文名稱: |
LED晶片微結構對光萃取效率及指向性之模擬與分析 Simulation and analysis of light extraction and directionality for LEDs with micro structures |
| 指導教授: |
孫慶成
Ching-cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 微結構 、指向性 、光子循環效應 、光萃取效率 、發光二極體 |
| 外文關鍵詞: | directionality, photon recycling effect, light extraction efficiency, LED, micro structure |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們使用蒙地卡羅光線追跡法建立出LED之光子循環效應的光學模型,並探討在不同的主動層吸收係數之條件下,光子循環效應對於GaN LED和AlGaInP LED之光萃取效率的影響。此外,我們更進一步地選取了表面結構之薄型氮化鎵和圖案式藍寶石基板兩種GaN LED結構,分析當微結構陣列之角錐的角度改變時,其對於晶片之指向性和光萃取效率的提升幅度。
In this thesis, we build the optical model for photon recycling effect of LEDs based on Monte Carlo ray tracing method. According to this model, under different absorption coefficients of the active layer, we analyze the light extraction efficiency with respect to GaN and AlGaInP LEDs. Furthermore, we select two kinds of GaN LED structures such as surface texture of ThinGaN LEDs and patterned substrate of sapphire-based LEDs. Based on these two structures, we analyze the enhancement of the directionality and the light extraction efficiency when the slanted angles of the pyramid array are different.
[1]H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 (1907).
[2]N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[3]J. W. Allen, M. E. Moncaster, and J. Starkiewicz, “Electroluminescent devices using carrier injection in gallium phosphide,” Solid-State Electron. 6, 95-102 (1963).
[4]H. G. Grimmeiss and H. J. Scholz, “Efficiency of recombination radiation in GaP,” Phys. Lett. 8, 233-235 (1964).
[5]A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
[6]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[7]H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[8]H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
[9]Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/a-Al2O3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[10]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[11]S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys. 76, 8180-8191 (1994).
[12]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34, L1332-L1335 (1995).
[13]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[14]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Carford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Disp. Techno. 3, 160-175 (2007).
[15]Optoelectronics Industry Development Association (OIDA), Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002 (Optoelectronics Industry Development Assn., Washington DC, 2002).
[16]E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
[17]C. J. Nuese, J. J. Tietjen, J. J. Gannon, and H. F. Gossenberger, “Optimization of electroluminescent efficiencies for vapor-grown GaAsP diodes” J. Electrochem. Soc. 116, 248-253 (1969).
[18]高國峯,GaN-LED晶片結構對光萃取效率影響的研究,國立中央大學光電科學研究所碩士論文,中華民國九十五年。
[19]李宗憲,氮化鎵發光二極體之光萃取效率分析與晶片設計,國立中央大學光電科學研究所博士論文,中華民國九十七年。
[20]R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, and M. G. Carford, “The growth and properties of high performance AlGaInP emitters using lattice mismatched GaP window layers,” J. Electron. Mater. 20, 1125-1130 (1991).
[21]R. M. Fletcher, C. P. Kuo, T. D. Osentowski, and V. M. Robbins, “Light-emitting diode with an electrically conductive window,” United States Patent, US 5008718 (1991).
[22]H. Sugawara, M. Ishakawa, Y. Kokubun, Y. Nishikawa, S. Naritsuka, K. Itaya, G. Hatakoshi, and M. Suzuki, “Semiconductor light-emitting device,” United States Patent, US 5153889 (1992).
[23]H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes,” Appl. Phys. Lett. 61, 1775-1777 (1992).
[24]K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045-1047 (1992).
[25]F. A. Kish, F. M. Steranka, D. C. Defevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Carford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839-2841 (1994).
[26]T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, and S. Shibata, “GaAs/GaAlAs surface emitting IR LED with Bragg reflector grown by MOCVD,” J. Cryst. Growth 107, 832-835 (1991).
[27]K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75, 3805-3807 (1999).
[28]Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[29]R. H. Horng, D.S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett. 75, 154-156 (1999).
[30]R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett. 75, 3054-3056 (1999).
[31]F. A. Kish and R. M. Fletcher, “AlGaInP light-emitting diodes” in High Brightness Light-Emitting Diodes (Academic, San Diego, 1997).
[32]M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S.A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated- pyramid (AlxGa1-x)0.5 In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365-2367 (1999).
[33]Osram Opto Semiconductors, http://www.osram-os.com
[34]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
[35]N. Linder, S. Kugler, P. Stauss, K. P. Streubel, R. Wirth, and H. Zull, “High-Brightness Light-Emitting Diodes Using Surface Texture,” Proc. SPIE 4278, 19-25 (2001).
[36]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315-2317 (2001).
[37]T. P. Chen, C. L. Yao, C. Y. Wu, J. H. Yeh, C. W. Wang, and M. H. Hsieh, “Recent Development in High Brightness LEDs,” Proc. SPIE 6910, 691005 (2008).
[38]M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
[39]D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate,” IEEE Photo. Techno. Lett. 18, 1406-1408 (2006).
[40]O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett. 89, 071109 (2006).
[41]C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[42]M. D. B. Charlton, M. E. Zoorob, and T. Lee, “Photonic Quasi-Crystal LEDs: Design, modelling, and optimisation,” Proc. SPIE 6486, 64860R (2007).
[43]M. P. C. Watts, M. Zoorob, T. Lee, and J. McKenzie, “The value, solution, and costs of patterning LED’s,” Proc. SPIE 6462, 64620N (2007).
[44]C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic Crystal LEDs – designing light extraction,” Laser & Photon. Rev. 3, 262-286 (2009).
[45]D. Z. Ting and T. C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[46]S. J. Lee, “Analysis of light-emitting diode by Monte Carlo photo simulation,” Appl. Opt. 40, 1427-1437 (2001).
[47]A. Badano and J. Kanicki, “Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting device,” J. Appl. Phys. 90, 1827-1830 (2001).
[48]C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN-based LED with introducing micro-structure array,” Opt. Eng. 43, 1700-1701 (2004).
[49]T. X. Lee, C. Y. Lin, S. H. Ma, and C. C. Sun, “Analysis of position-dependent light extraction of GaN-based LED,” Optics Express 13, 4175-4179 (2005).
[50]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for lighting based on cross-correlation in mid-field region,” Opt. Lett. 31, 2193-2195 (2006).
[51]T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Optics Express 15, 6670-6676 (2007).
[52]S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang, and T. P. Chen, “AlGaInP Yellow-Green Light-Emitting Diodes with a Tensile Strain Barrier Cladding Layer,” IEEE Photon. Technol. Lett. 9, 1199-1201 (1997).
[53]H. Hamada, R. Hiroyama, S. Honda, M. Shono, K. Yodoshi, and T. Yamaguchi, “AlGaInP Strained Multiple-Quantum Well Visible Laser Diodes (λ≦630 nm Band) with a Multiquantum Barrier Grown on Misoriented Substrates,” IEEE J. Quantum Electron. 29, 1844-1850 (1993).
[54]K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High Brightness AlGaInP Light-Emitting Diodes,” IEEE J. Selected Topics in Quantum Electron. 8, 321-332 (2002).
[55]Th. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95, 2203-2216 (2004).
[56]J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 2002).
[57]E. Dupont, H. C. Liu, M. Buchanan, S. Chiu, and M. Gao, “Efficient GaAs light-emitting diodes by photon recycling,” Appl. Phys. Lett. 76, 4-6 (2000).
[58]F. Renner, P. Kiesel, G. H. Doher, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,” Appl. Phys. Lett. 81, 490-492 (2002).
[59]J. Kvietkova, L. Siozade, P. Disseix, A. Vasson, J. Leymarie, B. Damilano, N. Grandjean, and J. Massies, “Optical Investigations and Absorption Coefficient Determination of InGaN/GaN Quantum Wells,” Phys. Stat. Sol. 190, 135-140 (2002).
[60]H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck-Shockley relation,” J. Appl. Phys. 88, 1525-1534 (2000).
[61]Breault Research Organization, http://www.breault.com/