跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林愈翔
Yu-Hsiang Lin
論文名稱: 以液晶調頻與PQ:PMMA VBG回饋之單縱模可調頻雷射於FMCW Lidar之研究
Development of a Tunable Single-Longitudinal-Mode Laser Based on Liquid Crystal Modulation and PQ:PMMA Volume Bragg Grating for FMCW Lidar
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 67
中文關鍵詞: 單縱模雷射雷射調頻頻率調制連續波雷射雷達
外文關鍵詞: Single Longitudinal Mode laser, Tunable Laser, FMCW Lidar
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究展示了一種低成本的頻率調變連續波雷射測距(FMCW Lidar)系統,其中可調頻的單縱模雷射基於以PQ:PMMA製作的反射式體積布拉格光柵(VBG)窄化輸出光譜,並結合液晶元件作為相位調制元件達成頻率可調。雷射子系統被整合進一個光纖式FMCW Lidar系統中,採用Mach-Zehnder干涉儀架構,在10公尺的量測距離內達成2公分的距離解析度,距離量測極限以雷射光源之同調長度37公尺計算約為18.5公尺。實驗結果證實了低成本FMCW Lidar的可行性,並驗證了本系統在距離測量應用上的效能。


    This thesis presents the development of a cost-effective frequency-modulated continuous-wave (FMCW) Lidar system featuring a frequency-tunable single longitudinal mode (SLM) laser. The laser is constructed using a PQ:PMMA-based reflective volume Bragg gratings (VBG) as the wavelength selective feedback element, and a Liquid crystal cell to modulate the optical path length for frequency tuning. Integrated into a fiber-based Mach-Zehnder interferometer architecture, the system achieves a ranging resolution of 2 cm over a 10-meter distance, with an estimated coherence length of 37 meters. Experimental results validate the feasibility of the proposed architecture and highlight its potential for low-cost high-resolution distance measurement applications.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 背景知識 4 2-1體積布拉格光柵 4 2-2基本雷射原理 6 2-2.1雷射縱模 6 2-2.2同調長度 9 2-3液晶與液晶盒 10 2-4 拍頻與偵測 12 2-5 FMCW Lidar原理 14 2.6 Mach-Zehnder interferometer 16 2.7 Lambertian Cosine Law 17 第三章 FMCW Lidar系統評估與模擬 19 3-1 單縱模頻率可調雷射次系統 19 3-1.1系統架構與設計原理 19 3-1.2雷射頻率調變理論分析 21 3-2 干涉儀與偵測次系統 22 3-2.1系統架構與工作原理 22 3-2.2收光透鏡選擇與Lambertian散射分析 24 3-3 訊號處理次系統 25 3-3.1 訊號處理原理 25 3-3.2 訊號處理流程 26 第四章 實驗架設與量測結果分析 27 4-1 單縱模頻率可調雷射次系統 29 4-1.1 基礎架構與特性量測 29 4-1.2 頻率可調範圍 32 4-2 FMCW Lidar干涉儀與偵測次系統 33 4-3 FMCW Lidar訊號處理流程 34 4-3.1 拍頻訊號處理流程 34 4-3.2 拍頻訊號分析過程與系統解析度 35 4-3.3 液晶驅動方式修正 38 4-4 距離量測 40 4-4.1 距離量測結果與分析 40 4-4.2 FMCW Lidar系統距離量測極限 41 第五章 實驗結論及未來展望 43 5-1 結論 43 5-2 未來展望 45 5-2-1單縱模頻率可調雷射次系統的改進 45 5-2-2 干涉儀與偵測次系統改進 46 Reference 47 附錄一 PQ:PMMA VBG製作 51 7-1 PQ:PMMA樣品製程 51 7-2以雙光束干涉製作反射式體積布拉格光柵 53

    1. Hymans, A. and J. Lait, Analysis of a frequency-modulated continuous-wave ranging system. Proceedings of the IEE-Part B: electronic and communication engineering, 1960. 107(34): p. 365-372.
    2. Bender, P., et al., The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information. Science, 1973. 182(4109): p. 229-238.
    3. Goyer, G.G. and R. Watson, The laser and its application to meteorology. Bulletin of the American Meteorological Society, 1963. 44(9): p. 564-570.
    4. DeLong, H., Air pollution field studies with a Raman lidar. Optical Engineering, 1974. 13(1): p. 5-9.
    5. Allen, R. and W. Evans, Laser radar (LIDAR) for mapping aerosol structure. Review of Scientific Instruments, 1972. 43(10): p. 1422-1432.
    6. Behroozpour, B., et al., Lidar system architectures and circuits. IEEE Communications Magazine, 2017. 55(10): p. 135-142.
    7. Jiang, Y., S. Karpf, and B. Jalali, Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nature photonics, 2020. 14(1): p. 14-18.
    8. Adams, M.D., Lidar design, use, and calibration concepts for correct environmental detection. IEEE Transactions on Robotics and Automation, 2000. 16(6): p. 753-761.
    9. Hariyama, T., et al., High-accuracy range-sensing system based on FMCW using low-cost VCSEL. Optics express, 2018. 26(7): p. 9285-9297.
    10. English, C., et al. TriDAR: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies. in Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2005.
    11. Strzelecki, E., D. Cohen, and L. Coldren, Investigation of tunable single frequency diode lasers for sensor applications. Journal of Lightwave Technology, 1988. 6(10): p. 1610-1618.
    12. Pierrottet, D., et al., Linear FMCW laser radar for precision range and vector velocity measurements. MRS Online Proceedings Library (OPL), 2008. 1076: p. 1076-K04-06.
    13. Behroozpour, B., et al. 11.8 Chip-scale electro-optical 3D FMCW lidar with 8μm ranging precision. in 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016. Ieee.
    14. Fleming, M. and A. Mooradian, Spectral characteristics of external-cavity controlled semiconductor lasers. IEEE Journal of Quantum Electronics, 1981. 17(1): p. 44-59.
    15. Steckman, G.J., et al., Characterization of phenanthrenequinone-doped poly (methyl methacrylate) for holographic memory. Optics letters, 1998. 23(16): p. 1310-1312.
    16. Wyatt, R. and W.J. Devlin, 10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range. Electronics Letters, 1983. 19(3): p. 110-112.
    17. Hawthorn, C.J., K.P. Weber, and R.E. Scholten, Littrow configuration tunable external cavity diode laser with fixed direction output beam. Review of Scientific Instruments, 2001. 72(12): p. 4477-4479.
    18. Coldren, L.A., et al., Tunable semiconductor lasers: A tutorial. Journal of Lightwave Technology, 2004. 22(1): p. 193.
    19. Ishii, H., et al. High-power (40mW) L-band tunable DFB laser array module using current tuning. in Optical Fiber Communication Conference. 2005. Optica Publishing Group.
    20. Antreasyan, A. and S. Wang, Electronic wavelength tuning with semiconductor integrated etalon interference lasers. Applied physics letters, 1983. 43(6): p. 530-532.
    21. Koch, G.J., et al., Side-line tunable laser transmitter for differential absorption lidar measurements of CO 2: design and application to atmospheric measurements. Applied optics, 2008. 47(7): p. 944-956.
    22. Zhang, X., J. Pouls, and M.C. Wu, Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Optics express, 2019. 27(7): p. 9965-9974.
    23. Dieckmann, A. and M.-C. Amann. Frequency-modulated continuous-wave (FMCW) lidar with tunable twin-guide laser diode. in Automated 3D and 2D Vision. 1994. SPIE.
    24. Uttam, D. and B. Culshaw, Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. Journal of Lightwave Technology, 1985. 3(5): p. 971-977.
    25. Gao, S. and R. Hui, Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection. Optics letters, 2012. 37(11): p. 2022-2024.
    26. Yariv, A. and P. Yeh, Optical waves in crystal propagation and control of laser radiation. 1983.
    27. Bayrakli, I. and Y.K. Erdogan, Photo-acoustic sensor based on an inexpensive piezoelectric film transducer and an amplitude-stabilized single-mode external cavity diode laser for in vitro measurements of glucose concentration. Optics & Laser Technology, 2018. 102: p. 180-183.
    28. Hinchet, R., et al., Piezoelectric properties in two-dimensional materials: Simulations and experiments. Materials Today, 2018. 21(6): p. 611-630.
    29. Hernández, G., Fabry-perot interferometers. 1988: Cambridge University Press.
    30. Vaughan, M., The Fabry-Perot interferometer: history, theory, practice and applications. 2017: Routledge.
    31. Stewart, I.W., The static and dynamic continuum theory of liquid crystals: a mathematical introduction. 2019: Crc Press.
    32. Khoo, I.-C., Liquid Crystals. 3rd Edition ed. 2022: John Wiley & Sons.
    33. Sarman, S., Molecular dynamics of liquid crystals. Physica A: Statistical Mechanics and its Applications, 1997. 240(1-2): p. 160-172.
    34. Razdan, K. and D. Van Baak, Demonstrating optical beat notes through heterodyne experiments. American Journal of Physics, 2002. 70(10): p. 1061-1067.
    35. Chung, T.-Y., R.-R. Chang, and Y.-H. Chen, Demonstration of FMCW LiDAR using a diode laser feedback with PQ: PMMA VBG. OSA Continuum, 2021. 4(10): p. 2687-2694.
    36. Hsiao, Y.-N., W.-T. Whang, and S.H. Lin, Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) hybrid materials. Optical Engineering, 2004. 43(9): p. 1993-2002.
    37. Liu, S., et al., Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material. JOSA B, 2011. 28(11): p. 2833-2843.
    38. Shih, B.-J., 以動態模型分析 PQ: PMMA 作為體積布拉格光柵之繞射效率研究. 2016, National Central University.

    QR CODE
    :::