跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張景雲
Jin-Yun Chang
論文名稱: H∞模糊控制—離散系統 線性分式轉換法
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 83
中文關鍵詞: 線性分式轉換法模糊控制
外文關鍵詞: fuzzy control, LFT
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以線性分式轉換法為主軸,分成三大部分來討論,第一部分是以數學模型來做推導,經由H∞性能條件和比例條件,推導出兩個矩陣不等式,第二部分為三次參數化和二次參數化,第三部分則是例子的電腦模擬,將依序來做介紹。
    第一部分,會先介紹線性分式轉換系統的架構和特徵以及因為線性分式轉換法架構而產生的比例條件。針對H∞性能條件和比例條件經由一些推導可得到兩個矩陣不等式,我們利用這兩個式子求出滿足條件式的控制器增益和一些變數,且可得知系統達到穩定,並滿足H∞性能指標要求。
    第二部分為三次參數化和二次參數化,兩者皆為將第一部分所推導出來的線性矩陣不等式,歸納成一個定理,不過其所用的寬鬆方法不同,也推導出不同架構的線性矩陣不等式,因而分別歸納成一個定理。
    最後以一個倒車入庫的例子進行電腦模擬分析,我們先將其非線性系統推導成一個擁有線性分式轉換法架構的式子,再利用所得到的參數去求解,用圖來顯示模擬的結果,以對定理做個驗證。


    論文摘要Ⅰ 誌謝Ⅱ 圖目Ⅴ 第一章 簡介 1 1.1 文獻回顧 1 1.2 研究動機 2 1.3 論文結構 3 1.4 符號標記 3 第二章 數學模型與H∞性能條件 4 2.1 數學模型 4 2.2 H∞性能條件 7 第三章 三次參數化之控制器設計 16 3.1 數學模型 16 3.2 H∞性能條件 18 3.3 寬鬆線性矩陣不等式 21 第四章 二次參數化之控制器設計 24 4.1 數學模型 24 4.2 H∞性能條件 26 4.3 寬鬆線性矩陣不等式 29 第五章 特例 31 5.1 數學模型 31 5.2 H∞性能條件 33 第六章 倒車入庫例子 36 6.1 倒車入庫數學推導 36 6.2 倒車入庫控制架構 39 6.3 倒車入庫求解 44 第七章 總結與未來研究方向 61 7.1 總結 61 7.2 未來研究方向 62 參考文獻 63 附錄A 矩陣介紹 69 附錄B 控制器增益值 72 B.1 三次參數化之控制器的增益值 72 B.2 三次參數化寬鬆方法之增益值 74 B.3 二次參數化之控制器的增益值 79 B.4 二次參數化寬鬆方法之增益值 80 B.5 狀態回饋控制器的增益值 83

    [1] T. Takagi and M. Sugeno,“Fuzzy identification of systems and
    its applications to modeling and control”, IEEE Trans. Syst.,
    Man, Cybern., vol. 15, no. 1, pp. 116--132, Jan. 1985.
    [2] M. Sugeno and G.T. Kang,“Structure identification of fuzzy
    model”,Fuzzy Sets and Systems, vol. 28, pp. 15--33, 1988.
    [3] K. Tanaka and M. Sugeno,“Stability analysis and design of
    fuzzy control systems”, Fuzzy Sets and Systems, vol. 45, pp. 135--156, 1992.
    [4] K. Tanaka and M. Sano,“Trajectory stabilization of a model car
    via fuzzy control”, Fuzzy Sets and Systems, vol. 70, pp. 155--
    170, 1995.
    [5] H.O. Wang, K. Tanaka, and M.F. Griffin,“An approach to fuzzy control of nonlinear systems: stability anddesign issues”,
    IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14--23, Feb. 1996.
    [6] K. Tanaka, T. Ikeda, and H.O. Wang,“Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs”,
    IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250--265, May 1998.
    [7] S.G. Cao, N.W. Rees, and G. Feng,“Analysis and design of fuzzy control systems using dynamic fuzzy global model”, Fuzzy Sets
    and Systems, vol. 75, pp. 47--62, 1995.
    [8] S.G. Cao, N.W. Rees, and G. Feng,“Stability analysis of fuzzy control systems”, IEEE Trans. Syst., Man, Cybern. B: Cybernetics,
    vol. 26, no. 1, pp. 201--204, Feb. 1996.
    [9] G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak,“Design of fuzzy control systems with guaranteed stability”, Fuzzy Sets and Systems, vol. 85, pp. 1--10, 1997.
    [10] S.H. Zak,“Stabilizing fuzzy system models using linear controllers”, IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 236--240, Apr. 1999.
    [11] I.R. Petersen,“Disturbance attenuation and H∞ optimization: a design method based on the algebraic Riccati equation”,
    IEEE Trans. Automat. Contr., vol. 32, no. 5, pp. 427--429, May
    1987.
    [12] D.S. Bernstein,“The optimal projection equations for static and dynamic output feedback: the singular case”, IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1139--1143, Dec. 1987.
    [13] D.S. Bernstein,“Robust static and dynamic output-feedback stabilization: deterministic and stochastic perspectives”,
    IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1076--1084,
    Dec. 1987.
    [14] K. Zhou and P.P. Khargonekar,“Robust stabilization of linear systems with norm-bounded time-varying uncertainty”, Syst. & Contr. Lett., vol. 10, pp. 17--20, 1988.
    [15] P.P. Khargonekar, I.R. Petersen, and K. Zhou,“Robust stabilization of uncertain linear systems: quadratic
    stabilizability and H∞ control theory”,
    IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356--361,
    Mar. 1990.
    [16] L. Xie, M. Fu, and C.E. de Souza,“H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback”, IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1253--1256, Aug. 1992.
    [17] J.C. Geromel, J. Bernussou, and M.C. de Oliveira,“H2-norm optimization with constrained dynamic output feedback
    controllers: decentralized and reliable control”,
    IEEE Trans. Automat. Contr., vol. 44, no. 7, pp. 1449--1454,
    July 1999.
    [18] H.J. Kang, C. Kwon, Y.H. Yee, and M. Park,“L2 robust stability analysis for the fuzzy feedback linearization regulator”,
    in Proc. of the 6th IEEE Int''l Conf. on Fuzzy Systems, 1997,
    vol.~1, pp. 277--280.
    [19] H.J. Kang, C. Kwon, H. Lee, and M. Park,“Robust stability analysis and design method for the fuzzy feedback linearization regulator”, IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 464--472, Nov. 1998.
    [20] K. Kiriakidis, A. Grivas, and A. Tzes,“Quadratic stability analysis of the Takagi-Sugeno fuzzy model”, Fuzzy Sets and Systems, vol. 98, pp. 1--14, 1998.
    [21] M.C.M. Teixeira and S.H. Zak,“Stabilizing controller design for uncertain nonlinear systems using fuzzy models”, IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 133--142, Apr. 1999.
    [22] S.G. Cao, N.W. Rees, and G. Feng,“Quadratic stability analysis and design of continuous fuzzy control systems”, Int''l. Journal on Systems Science, vol. 27, no. 2, pp. 193--203, 1996.
    [23] S.G. Cao, N.W. Rees, and G. Feng,“Analysis and design of fuzzy control systems using dynamic fuzzy-state space models”,
    IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 192--200, 1999.
    [24] K. Tanaka, T. Ikeda, and H.O. Wang,“Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities”, IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1--13, Feb. 1996.
    [25] K. Tanaka, T. Hori, and H.O. Wang,“New robust and optimal designs for Takagi-Sugeno fuzzy control systems”, in Proc. of 1999 IEEE Int''l Conf. on Control Appl., Kohala Coast, Hawaii, 1999, pp. 415--420.
    [26] S.G. Cao, N.W. Rees, and G. Feng,“ H∞ control of nonlinear continuous-time systems based on dynamical fuzzy models”,
    Int''l. Journal on Systems Science, vol. 27, no. 9, pp.
    821--830, 1996.
    [27] S.G. Cao, N.W. Rees, and G. Feng,“H∞ control of uncertain fuzzy continuous-time systems”, Fuzzy Sets and Systems, vol. 115, pp. 171--190, 2000.
    [28] Z. Han and G. Feng,“State feedback H∞ controller design of fuzzy dynamic systems using LMI techniques”, in Proc. of IEEE World Congress on Computational Intelligence, Anchorage, AK., May 1998, vol.~1, pp. 538--544.
    [29] A. Jadbabaie, M. Jamshidi, and A. Titli,“Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities”, in Proc. of IEEE World Congress on Computational Intell., Anchorage, AK., May 1998, vol.~1, pp. 268--273.
    [30] S.K. Hong and R. Langari,“Synthesis of an LMI-based fuzzy control system with guaranteed optimal H∞ performance”, in Proc. of IEEE World Congress on Computational Intell., Anchorage, AK., May 1998, vol.~1, pp. 422--427.
    [31] B.S. Chen, C.S. Tseng, and H.J. Uang,“Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach”, IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 249--265, June 2000.
    [32] K. Zhou, Essentials of Robust Control, Prentice-Hall, Upper Saddle River, NJ., 1998.
    [33] H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto,“New fuzzy control model and dynamic output feedback parallel distributed compensation”, IEEE Trans. Fuzzy Syst., 2002, submitted for publication.
    [34] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, NY, 2001.
    [35] J.C. Lo and J.Y. Jang,“H∞ control for fuzzy systems with LFT framework”, in Proc. 10th Nat''l Conf. Fuzzy Theory and Appl., Shinchu, TW, Nov. 2002, pp. 23--26.
    [36] G. Feng and J. Ma,“Quadratic stabilization of uncertain discrete-time fuzzy dynamic system”, IEEE Trans. Circuits and Syst. I: Fundamental theory and Applications, vol. 48, no. 11,
    pp. 1137--1344, 2001.

    QR CODE
    :::