| 研究生: |
陳志誠 Chih-Cherng Chen |
|---|---|
| 論文名稱: |
金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析 |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 田口式實驗設計法 、體適合有限元素法 、達西定律 、毛細吸附脫脂 、變異數分析 |
| 外文關鍵詞: | wick-debinding, Darcy’s law, body-fitted FEM |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毛細吸附脫脂在金屬粉末射出成形中,是一種影響成品品質甚鉅,且極為複雜之製程。胚體/吸附材組合體內部熔融狀黏結劑之脫脂流動,類似於多孔性介質流之現象。應用達西定律,本文除了建立一套模擬二維毛細吸附脫脂之理論模式外,並利用體適合有限元素法來模擬胚體之毛細脫脂過程,預測整個流動區域之壓力場和速度場分佈,以及脫脂時間和相關物理特性。為了簡化問題,假設黏結劑為單一成份,且初始以熔融狀態完全飽和充填於胚體中。此外,以視流法觀測模擬脫脂,並藉田口式實驗分析法,和L9直交表矩陣實驗方式及變異數分析,決定影響脫脂效果可控因子水準的最適化條件。最後,透過可同時量測滲透度與毛細壓力之簡易實驗裝置,將所得的實驗數據,經擬合後可獲取空孔度、滲透度與毛細壓力彼此間之關係。結果顯示,數值模擬預測脫脂時間,隨胚體厚度的平方成正比,且與實驗量測所得及早期文獻之結果,有極大的吻合程度,這證明了本文理論模式與體適合有限元素法,在模擬毛細吸附脫脂製程應用上的適用性和可靠性。當脫脂接近完成階段時,脫脂速率因黏結劑流動阻力之減少而急速增加。另外,低值的雷諾數和毛細數,說明了毛細效應遠勝於慣性力和黏滯力。實驗結果亦說明了在兼顧脫脂品質的要求下,影響脫脂參數最適化水準組合為3:1的胚體/吸附材鋼珠粒徑比、黏結劑種類為R-32潤滑油、鋼珠外型為光滑表面且吸附材內部為充填均勻情形,(亦即A1B2C1D1),如此則可改善黏結劑的指狀缺陷約為15 dB和殘留量約為10 dB左右。值得一提的是,當脫脂過程完成時,黏結劑移動的外波前形狀和胚體的外邊界幾何形狀是幾乎一致的,此現象可做為決定吸附材使用量的參考依據。
Wick-debinding in metal injection molding (MIM) is an intricate phenomenon. The motion of molten binder is similar to the fluid flowing through a porous medium in the compact-wick material combination. In the present study, a mathematical model, based on Darcy’s law, is established. To simplify the problem, the assumptions of a single component binder and a fully saturated compact with molten binder are adopted. Body-fitted finite element method (BFEM) is used to calculate the distribution of pressure and other related properties during the wick-debinding of the 2D combination. Additionally, the flow visualization experiment, designed by the Taguchi’s method and a L9 orthogonal array, is qualitatively conducted to describe the process of binder removal. According to the analysis of ANOVA, the optimal control factors can be determined during the wicking process. However, a simple equipment is designed to measure the permeability and the capillary pressure simultaneously. Then the relationships of porosity versus permeability for the simulated porous samples, and the porosity versus capillary pressure for glycerin and R-68 oil are easily obtained. Results show that the prediction of debinding time versus compact thickness squared agrees well to the experimental data. The reliability and accuracy of the present numerical analysis is thus verified. When wicking process is nearly to be finished, the debinding rate increase quickly. Low Reynolds number and low capillary number indicate that capillarity is dominate over other effects, such as inertia force, viscous force, etc. Under the optimal settings, an improvement in the fingering defect and the residual of binder is about 15 dB and 10 dB, respectively. The shape of the flow front of the molten binder and the outer geometry of the compact are found to be closely matched in the final step of wick debinding.
1 王令儀, “非鐵金屬材料粉末射出成型技術”, 粉末冶金會刊,第24
卷, 第3期, pp.160-169 (1999).
2 黃坤祥, “台灣MIM研究動態”, 粉末冶金會刊,第20卷,第3期,
pp.175-179 (1995).
3 A. D. Hansonand S. C. Perruzza, “Optimizing component
designs for metal injectio n molding”, Int. J. Powder
Metall., Vol.36, No.3, pp.37-42 (2000).
4 R. T. Fox and D. Lee, “Optimization of metal injection
molding : experimental design”, Int. J. Powder Metall.,
Vol.26, No.3, pp.233-243 (1990).
5 J. R. Gaspervich, “Practical application of flow analysis in
metal injection molding”, Int. J. Powder Metall., Vol.27,
No.2, pp.133-139 (1991).
6 L. F. Pease III, “Present status of PM injection moulding
(MIM) - An overview”, MPR, pp.242-254 (1988).
7 R. S. Libb, B. R. Patterson and H. A. Heilin, “Production
and evaluation of PM injection moulding feedstocks”, MPR,
pp.255-258 (1988).
8 G. R. White and R. M. German, “Effect of processing
conditions on powder injection molded 316L stainless steel”,
Adv. in Powder Metall. & Part. Mater., Vol.4, pp.185 (1994).
9 K. M. Kulkarni, “Dimensional precision of MIM parts under
production conditions”, Int. J. Powder Metall., Vol.33,
No.4, pp.29-41 (1997).
10 M. Dutilly, O. Ghouati, J. C. Gelin, “Finite-element
analysis of the debinding and desification phenomena in the
process of metal injection molding”, J. Mater. Process.
Tech., Vol.83, pp.170-175 (1998).
11 J. R. Merhar, “Overview of metal injection moulding”, MPR,
pp.339-342 (1990).
12 K. M. Kulkarni, “Metal powders and feedstocks for metal
injection molding”, Int. J. Powder Metall., vol.36, No.3,
pp.43-52 (2000).
13 L. Nyborg, E. Carlstrom, A. Warren, and H. Bertilsso,
“Guide to injection molding of ceramics and hardmetals :
special consideration of fine powder”, Powder Metall.,
Vol.41, No.1, pp.41-45 (1998).
14 M. T. Martyn, D. A. Issitt, B. Haworth, and P. J. James,
“Injection moulding of powders”, Powder Metall., Vol.31,
No.2, pp.106-111 (1988).
15 C. M. Kipphut, and R. M. German, “Powder selection for
shape retention in powder injection molding”, Int. J.
Powder Metall., Vol. 27, No.2, pp.117-124 (1991).
16 R. Miura and S. Takamori, “Effects of powder
characteristics and debinding conditions on deformation
behavior of injection molded compacts during thermal
debinding”, ibid, Ref.4, pp.359 (1976).
17 B. K. Lograsso, A. Bose, B. J. Carpenter, C. I. Chung, K. F.
Hens, D. Lee, S. T. Lin, C. X. Liu, R. M. German, R. M.
Messler, P. F. Murley, B. O. Rhee, C. M. Sierra, and J.
Warren, “Injection of carbonyl iron with polyethylene
wax”, Int. J. Powder Metall., Vol.25, No.4, pp. 337-348
(1989).
18 R. M. German, Powder injection molding, MPIF, Princeton,
N.J., (1990).
19 K. C. Hsu and G. M. Lo, “Effect of binder composition on
rheology of iron powder injection moulding
feedstocks : experimental design”, Powder Metall., Vol.39,
No.4, pp. 286-290 (1996).
20 K. C. Hsu, C. C. Lin, and G. M. Lo, “Effect of wax
composition on injection moulding of 304L stainless steel
powder”, Powder Metall., Vol.37, No.4, pp.272-276 (1994).
21 K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The
effects of binder on the mechanical properties of carbonyl
iron products”, JOM, pp.17-21 (1989).
22 H. H. Angermann, F. K. Yang, O. van der Biest, “Removal of
low molecular weight components during thermal debinding of
powder compacts”, J. Mater. Sci., Vol.27, pp.2534-2538
(1992).
23 H. H. Angermann and Omer van der Biest, “Removal of low
molecular weight components in thermal debinding of MIM
compacts”, Int. J. Powder Metall., Vol.30, No.4, pp.445-452
(1994).
24 D. P. Duncavage and C. W. Finn, “Debinding and sintering of
metal injection molded 316L stainless steel”, Adv. in
Powder Metall. & Part. Mater., Vol.5, pp.91 (1993).
25 Y. S. Zu, S. T. Lin, “Optimizing the mechanical properties
of injection molded W-4.9%Ni-2.1%Fe in debinding”, J.
Mater. Process. Tech., Vol.71, pp.337-342 (1997).
26 楊偉文, 楊開雲, 洪敏雄, “金屬射出成形用水溶性黏結劑之研究”,
粉末冶金會刊,第24卷,第1期,pp.24-29 (1999).
27 C. W. Finn, “Vacuum binder removal and collection”, Int.
J. Powder Metall., Vol.27, No.2, pp.127-132 (1991).
28 Tai-Shing Wei, and Randall M. German, “Injection molded
Tungsten heavy alloy”, Int. J. Powder Metall., Vol.24,
No.4, pp.327-335 (1988).
29 H. Zhang, R. M. German, and A. Bose, “Wick debinding
distortion of injection molded powder compacts”, Int. J.
Powder Metall., Vol.26, No.3, pp.217- 230 (1990).
30 R. M. German, “Theory of thermal debinding”, Int. J.
Powder Metall., Vol.23, No.4, pp.237-245 (1987).
31 B. K. Lograsso, R. M. German, “Thermal debinding of
injection molded powder compacts”, pmi, Vol.22, No.1, pp.17-
22 (1990).
32 B. R. Patterson and C. S. Aria, “Debinding injection molded
materials by melt wicking”, JOM, pp.22-24 (1989).
33 R. Vetter, M. J. Sanders, I. Majewska-Glabus, L. Z. Zhuang
and J. Duszczyk, “Wick-debinding in powder injection
molding”, Int. J. Powder Metall., Vol.30, No.1, pp.115-124
(1994).
34 R. Vetter, W. R. Horninge, P. J. Vervoort, I. Majewska-
Glabus, L. Z. Zhuang, J. Duszczyk, “Squared root wick
debinding model for powder injection moulding”, Powder
Metall., Vol.37, No.4, pp.265-271 (1994).
35 K. S. Hwang, R. M. German, and F. V. Lenel, “Capillary
forces between spheres during agglomeration and liquid phase
sintering”, Metall. Trans., Vol.18A, pp.11-17 (1987).
36 A. Bose and R. M. German, “Sintering atmosphere effects on
the ductility of W-Ni-Fe heavy metals”, Metall. Trans.,
Vol.15A, pp.747-754 (1984).
37 L. L. Bourguignon and R. M. German, “Sintering temperature
effects on a tungsten heavy alloys”, Int. J. Powder
Metall., Vol. 24, pp.115-121 (1988).
38 F. A. L. Dullien, Porous media fluid transport and pore
structure, Academic Press, New York. (1979).
39 J. Bear, Dynamic of fluids in porous media, Dover
Publications, New York, (1972).
40 A. E. Scheidegger, The physics of flow through porous media,
3rd ed.,University of Toronto Press, Great Britain, (1974).
41 R. E. Collins, Flow of fluids through porous materials,
Reinhold Publishing Co., New York, (1961).
42 A. M. Schwartz, “Capillarity theory and practice”, Ind.
Eng. Chem., Vol.61,No.1, pp.10-21 (1969).
43 Y. W. Yang and G. Zografi, “Use of the Washburn-Rideal
equation for studying capillary flow in porous media”, J.
Pharm. Sci., Vol.75, No.7, pp.719-721 (1986).
44 E. W. Washburn, “The dynamics of capillary flow”, The
Physical Review, 2nd series, Vol.12, pp. 273-283 (1921).
45 S. Levine and G. H. Neale, “Theory of rate of wetting of a
porous medium”, Faraday Transactions, Vol.71, pp.12-21
(1975).
46 W. J. Beek and K. M. K. Muttzall, Transport phenomena, John
Wiley and Sons, London, UK, (1975).
47 S. Kalliadasis and H. C. Chang, “Apparent dynamic contact
angle of an advancing gas-liquid meniscus”, Phys. Fluids,
Vol.6, No.1, pp.12-23 (1994).
48 J. F. Thompson, Z. U. A. Warsi, C. W. Mastin, Numerical grid
generation foundations and applications, North-Holland
(1982).
49 Thomas P. D., and Middlecoff J. F., “Direct control of the
grid point distribution in meshes generated by elliptic
equation”, AIAA J., Vol.18, No.6, pp.652-656 (1980).
50 D. S. Burnett, Finite element analysis from concepts to
applications, Addison-Wesley Publishing Company, Singapore
(1998).
51 J. N. Reddy, An introduction to the finite element method,
McGraw-Hill, Inc., Sigapore, (1993).
52 M. S. Phadke, Quality engineering using robust design, AT&T
Bell Laboratories, P T R Prentice-Hall, Inc., N. J. (1989).
53 P. Ross, Taguchi techniques for quality engineering, McGraw-
Hill Inc., New York (1988).
54 G. Taguchi, Introduction to quality engineering, Kraus
International Publication, White Plains, N.Y. (1986).
55 G. Taguchi, Introduction to quality engineering, Asian
Productivity Organization, distributed by American Supplier
Institute, Inc., Dearborn, MI. (1986).
56 K. J. Ahn and J. C. Seferis,” Simultaneously measurements
of permeability and capillary pressure of thermosetting
matrices in woven fabric reinforcements”, Polym. Compos.,
Vol.12, No.3, pp.146-152 (1991).
57 張智淵, 轉注成型充填過程中氣泡形成之數值模擬, 博士論文, 中央
大學, 機械所 (1998).
58 F. M. White, Viscous fluid flow, McGraw-Hill press,
Singapore (1991).