跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張勝涵
Sheng-Han Chang
論文名稱: 於離子交換波導表面組裝三角晶格之奈米粒子陣列實現具指向性空間解析之拉曼光譜
指導教授: 戴朝義
Chao-Yi Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 72
中文關鍵詞: 週期性金屬結構光柵繞射波導
外文關鍵詞: PPA, Grating, waveguide
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將波導與表面增強拉曼散射結合,利用於離子交換波導表面之週期性金屬結構使拉曼散射具有空間指向性。藉由透鏡後孔徑成像之實驗分別以綠光與紅光雷射為操作波長得到之出射角度分別為19度及7.3度,利用相位匹配之理論估計以直徑500奈米之聚苯乙烯小球製作之週期性銀結構與鈉-鉀離子交換波導之模態耦合之出射角度,與實驗之結果比較發現有一定程度的吻合。然而,因週期性結構之製程不夠完善的緣故,例如:晶格之排列、錯位與點缺陷,使得實驗與理論的結果不匹配。然而,目前得到的結果證明利用此結構能量測具空間解析之指向性拉曼散射,若能改善週期性結構之組裝結果,便能不使用光譜儀就得到空間解析拉曼散射。


    In this study, self-assembled periodic particle array(PPA) was investigated on ion-exchanged waveguide which enables surface enhance Raman scattering with directivity. Through back pupil plane imaging experiments, the output angles for red(=632.8nm) and green(=532nm) light are measured to be 7.3o and 19o, corresponding to 0.135o/nm. This result is in close agreement with that obtained by the grating phase matching theory for the PPA atop ion-exchange waveguide. However, weak controlling ability in the fabrication of the PPA led to imperfections such as different lattice orientations, dislocations and point defects which all contribute to the discrepancy between the experimental and theoretical result. Nevertheless, the current results have promised the capability to spatially resolve the Raman scattered light without using a bulky spectrometer with improved quality of the PPA.

    目錄 摘要 i Abstract ii 目錄 ii 圖目錄 iii 表目錄 v 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.2.1拉曼散射 3 1.2.2表面增強拉曼散射 4 1.2.3Beamed 拉曼 6 1.3 研究動機與目的 8 1.4 論文架構概述 9 第二章 研究方法 10 2.1 金屬物質特性 10 2.1.1杜德模型 10 2.2金屬表面電漿共振 17 2.2.1表面電漿簡介 17 2.2.2介電質與金屬介面之表面電漿波 18 2.3 光柵介紹與原理 22 2.3.1一維光柵繞射角與波長的關係 23 2.3.2二維光柵與倒晶格(Reciprocal lattice) 24 2.3.3波導(Waveguide)表面之週期性結構與出射光之關係 26 2.4孔徑平面成像(Image of pupil plane) 29 第三章樣品製備與實驗架構 32 3.1 離子交換波導製作過程 32 3.2 奈米小球鋪排與週期性金屬結構 36 3.3 波導模態與週期性金屬結構耦合之出射光角度量測架構 40 第四章 實驗結果與討論 43 4.1物鏡孔徑成像面之校正實驗 43 4.2不同入射光波長之出射角度 45 4.3數值模擬與實驗得到之出射角度分析 51 第五章 結論與未來展望 57 參考文獻 59

    [1] C.V. Raman and K.S. Krishnan, ”A new type of radiation”. Nature121 p.501-502,1928.
    [2] M. Fleischman, P.J. Hendra and A.J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode“. Chem.Phys. Lett. 26, p.163-166, 1974.
    [3] D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode “. J. Electroanal. Chem. 84, p.1, 1977.
    [4] M.G. Albrecht and J.A. Creghton , “Anomalously intense Raman spectra of pyridine at a silver electrode” . J. Am. Chem. Soc. 99(15),p. 5215-5217, 1977.
    [5] P. Hildebrandt and M. Stockburger, “Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver“. J. Phys. Chem.88, p.5935, 1984.
    [6] J.T. Golab and R.P. Van Duyne “A surface enhanced hyper‐Raman scattering study of pyridine adsorbed onto silver: Experiment and theory“. J. Chem. Phys 88, 7942-7951, 1988.
    [7] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) “. Phys. Rev. Lett. 78, p.1667, 1997.
    [8] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering“. Sci. 275, p.1102, 1997.
    [9] Y. Zhao, I. Avrutsky, and B. Li, “Optical coupling between monocrystalline colloidal crystals and a planar waveguide”. Appl. Phys. Lett. 75, p3596-3598 ,1999
    [10] Ivan Avrutsky, Vladimir Kochergin, and Yang Zhao, Member,” Optical Demultiplexing in a Planar Waveguide with Colloidal Crystal”. IEEE photonics technology letters, vol.12,no.12, p1647-1649,2000
    [11] Y. Zhao and I. Avrutsky, “Two-dimensional colloidal crystal corrugated waveguide”. Opt. Lett., vol. 24, p 817–819, 1999.
    [12] Yizhuo Chu, Wenqi Zhu, Dongxing Wang and Kenneth B. Crozier,” Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate”. optics express, Vol. 19, No. 21,p20054-20068,2011
    [13] Timur Shegai, Bjorn Brian, Vladimir D. Miljkovic, and Mikael Kall,” Angular Distribution of SurfaceEnhanced Raman Scattering from Individual Au Nanoparticle Aggregates”. ACS nano, vol.5, no. 3 ,p2036–2041 ,2011
    [14] William Streifer, Donald R. Scifres and Robert D. Burnham, “Coupled Wave Analysis of DFB and DBR Lasers”. IEEE J. Quantum elec. Vol.QE13, NO.4,1977.
    [15] Drude and Paul, “Zur Elektronentheorie der metalle“. Annalen der Physik. 306, p.566, 1900.
    [16] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals” . Phys. Rev. B 6, p.4370, 1972.
    [17] R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum“. Phil. Mag. 4, p.396, 1902.
    [18] U.Fano,”The theory of anomalous diraction gratings and of quasistationary waves on metallic surfaces”. J. Opt. Soc. Am. 31, p.213, 1941.
    [19] Hessel, and A. A. Oliner, “ A New Theory of Wood’s Anomalies on Optical Gratings” .Appl. Opt., 4, 1275, 1965.
    [20] R. H. Ritchie, '' Plasma losses by fast electrons in thin films''. Phys. Rev. 106, p.874, 1957.
    [21] Otto, ''Excitation of nonradiative surface plasma waves in silver by method of frustrated total reection ''. Z. Phys. 216, p.398, 1968.
    [22] E. Kretschm and H. Raether, “Radiative decay of non radiative surface plasmons excited by light“. Z. Naturf. 23A, p.2135, 1968.
    [23] C. Nylander, B. Liedberg, and T. Lind, “Gas Detection by Means of SurfacePlasmon Resonance”. Sens. and Actuators, 3,79,1982.
    [24] Clifford R. Pollock and Michal Lipson,Integrated photonic. Boston/Dordrecht/London, Springer, 2003,Chapter6.
    [25] G. L. Yip and J. Albert, “Characterization of planar optical waveguides by K+-ion exchange in glass”. , Optics Letters, Vol. 10, No. 3 ,p151-153,1985.
    [26] Stefano palomba, Hayk harutyunyan and Lukas novotny, “Nonlinear plasmonics at planar metal surfaces”. Phil. Trans. R. Soc. A 369, 3497 ,2011.
    [27] N. Denkov, et al., “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir. 8(12), p. 3183-3190, 1992
    [28] Peter A. Kralchevskyand Nikolai D. Denkov, “Capillary forces and structuring in layers of colloid particles”. Current Opinionin Colloid & Interface Science 6,p383-401,2001.
    [29] R. Micheletto, H. Fukuda and M. Ohtsut, “A simple method for the production of a two-dimensional, ordered array of small latex particles”. Langmuir, Vol. 11, No. 9,p3333-3336, 1995
    [30] Traci R. Jensen, Michelle Duval Malinsky, Christy L. Haynes, and Richard P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles”. J. Phys. Chem. B, 104, 10549-10556,2000
    [31] Martin N.Weiss and Ramakant Srivastava, “Determination of ion exchanged channel waveguide profile parameters by mode-index measurements”. Applied optics Vol. 34, No. 3,1995

    QR CODE
    :::