跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林志憲
Chih-Hsien Lin
論文名稱: 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器
Multi-Gbps Serial Link Transmitter with Pre-emphasis and All Digital Data Recovery with Oversampling Method
指導教授: 鄭國興
Kuo-Hsing Cheng
周世傑
Shyh-Jye Jou
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 104
中文關鍵詞: 預先增強器串列連結超取樣
外文關鍵詞: Pre-emphasis, Serial Link, Oversampling
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多媒體應用的增加,使得傳輸資料頻寬的需要量增大。 如果把高速串列連結傳輸應用在價格低廉的纜線上,將是非常節省成本的方法。 本論文中內完成適用於纜線的5-10Gbps傳收器之核心設計、規格建立及晶片製作。 目前傳收系統的核心主要是在傳輸端的編碼方式、傳輸收發電路的濾波器(Pre-emphasis or Equalizer)以及接收端的時序回復電路。 因為高速傳輸的應用,傳導纜線的頻率響應為一低通濾波的形式,且隨著纜線長度的增加,信號在高頻部份的衰減也會呈線性的增加。 因此在本論文中提出傳輸器信號預先增強器並分析其訊號在時域及頻域上的響應及現象。 在電路上則使用了自訂的預先加強之係數使得接收端電壓維持固定,其規格為300mV 10/5 Gbps(4/2 PAM)。
    接著在此論文中提出一個全數位式時脈資料回復器電路設計,其架構相當的規律且是適用於不同的架構。 在TSMC .25製程下,其verilog程式合成結果之速度可達到5Gbps。由於我們用超取樣之方式實現全數位之資料回復電路架構,此論文亦分析一些重要的效能及設計參數並推導其分式使不同的設計參數可以符合不同的系統規格。 此外本論文亦對整個資料回復電路做一套影響系統效能的雜訊以及錯誤率分析並將影響系統效能的因素參數化。


    Due to the increasing applications of multimedia in recent years, the requirement of data bandwidth has been increased. High speed serial link that achieves Gbps has the advantage of low cost and thus become popular. In this thesis, we achieve 5-10 Gbps transceiver system including core design, specification decision and IC implementation for cable transmission. The main structures of the transceiver system are transmission data encoder, and transmitter pre-emphasis, equalizer and clock recovery circuit of the receiver. Because of the application for the high speed data rate transmission, the cable exhibits like a low pass filter. Signal amplitude decreases when data rate increases. A transmitter with pre-emphasis is proposed. The time domain and frequency domain response analysis are carried out to show the performance. It uses custom coefficients of pre-emphasis to fix the signal amplitude in receiver node which is about 300mV for 10/5 Gbps (4/2 PAM).
    In the thesis, we also proposed an all digital data clock recovery circuit which is very regular and flexible for different applications. We adopt an oversampling phase-picking method to realize an all digital data recovery circuit. Several key performance and design parameters are analyzed and formulated, therefore, different specifications can be met with different design parameters. Finally, we derive a set of jitter and BER analysis equations of the oversampling method. Using TSMC .25 CMOS process, this circuit can archive 5Gbps.

    Chapter 1 Introduction 1 1.1 Introduction of High-Speed Serial Links Transceiver 1 1.2 Transceiver Architecture 2 1.3 Motivation and Goals 7 1.4 Thesis Organization 8 Chapter 2 Phase Lock Loop with Multi-Phase 10 2.1 Introduction of Phase Lock Loop 10 2.2 PLL Architecture 11 2.2.1 Phase Frequency Detector 12 2.2.2 Loop Filter 14 2.2.3 Voltage Control Oscillator 15 2.2.4 Phase Interpolator 18 2.2.5 Output Buffer and Divider 19 2.3 Analysis of PLL Linear Model 21 2.4 Implementation Results 24 2.5 Summary 26 Chapter 3 Signaling Analysis of Transceiver 27 3.1 Introduction 27 3.2 Package and Channel Effects 28 3.2.1 Cable Effect 28 3.2.2 Package Effect 30 3.3 Pre-emphasis 35 3.3.1 Pre-emphasis Methods 35 3.3.2 ISI Cancellation 36 3.3.3 Behavior of FIR and DAC 38 3.4 Total Frequency Response of Transceiver 43 3.5 Summary 43 Chapter 4 Architecture of Transmitter with Pre-emphasis 45 4.1 Introduction 45 4.2 Architecture Design 45 4.3 Circuit Design 47 4.3.1 Synchronizer 48 4.3.2 Mux 50 4.3.3 Charge Sharing Effect 51 4.3.4 Simulation Results 53 4.4 Circuit Implementation and Measurement Results 56 4.5 Summary 61 Chapter 5 Architecture of Blind Oversampling Data Reovery and Bit Error Rate Analysis 63 5.1 Introduction 63 5.2 Architecture Design 64 5.3 Circuit Design 67 5.3.1 Front-end Block 67 5.3.2 Back-end Block 69 5.4 Performance Analysis 74 5.4.1 Bit Error Rate Analysis 75 5.4.2 Tracking Rate of Oversampling-Based CDR 84 5.4.3 Asymptotic Jitter Tolerance Mask of Oversampling-Based CDR 88 5.5 Implementation Results 95 5.6 Summary 96 Chapter 6 Conclusion 97 Reference 100

    [1] F. R. Ramin, C. K. Yang, M. Horowitz, and T. Lee, “A 0.4-?m CMOS 10-Gb/s 4-PAM Pre-Emphasis Serial Link Transmitter,” IEEE J. Solid-State Circuits, vol.34, no. 5, pp. 580-585, May 1999.
    [2] C. K. Yang, and K. L. Wong, “Analysis of Timing Recovery for Multi-Gbps PAM Transceivers,” IEEE Custom Integrated Circuits Conference, Sept. 2003, pp. 67–72.
    [3] C. K. Ken Yang, F. R. Ramin, and M. Horowitz, “A 0.5-?m CMOS 4.0-Gbit/s Serial Link Transceiver with Data Recovery Using Oversampling,” IEEE J. Solid-State Circuits, vol.33, no.5, pp. 713-722, May 1998.
    [4] W. J. Dally, and J. Poulto, “Transmitter Equalization for 4-Gbps Signaling,” IEEE Micro, vol.17, no.1, pp. 47-56, 1997.
    [5] M. Horowitz, and C. K. Yang, “High-Speed Electrical Signaling: Overviews and Limitations,” IEEE Micro, vol.18, no.1, pp. 12-23, 1998.
    [6] C. H. Lin, C. H. Wang, and S. J. Jou, “5Gbps Serial Link Transmitter with Pre-emphasis,” Asia and South Pacific Design Automation Conference, 2003, pp. 795-802.
    [7] C. H. Lin, C. H. Tsai, C. N. Chen, and S. J. Jou, “4/2 PAM serial link transmitter with tunable pre-emphasis,” International Symposium on Circuits and Systems, 2004, pp 952-955.
    [8] C. K. Yang, and M. Horowitz, “A 0.8-?m CMOS 2.5 Gb/s Oversampling Receiver and Transmitter for Serial Links,” IEEE J. Solid-State Circuits, vol.31, no.12, Dec. 1996, pp. 2015–2023.
    [9] K. Lee, S. Kim, G. Ahn, and D. K. Jeong, “A CMOS Serial Link for Fully Duplexed Data Communication,” IEEE J. Solid-State Circuits, vol.30, No.4, pp. 353–364, April. 1995.
    [10] F. R. Ramin, and C. K. Yang, ”A 0.3-?m CMOS 8-Gbs/s 4-PAM Serial Link Transceiver,” Symposium on VLSI Circuits Digest of Technical Papers, 1999, pp. 41-44.
    [11] S. Kim, K. Lee, D. K. Jeong, D. D. Lee, and A. G. Nowatzyk, “ An 800Mbps Multi-channel CMOS Serial Link with 3× Oversampling,” Custom Integrated Circuits Conference, 1995, pp.451-454.
    [12] Universal Serial Bus Specification Revision 2.0, Mar. 2000.
    [13] P1394b Draft Standard for a High Performance Serial Bus(Supplement), P1394b Draft 1.3.1, Oct 15, 2001.
    [14] IEEE Std 802.3ae-2002, “IEEE Standard for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications — Media Access Control (MAC) Parameters, Physical Layer and Management Parameters for 10 Gb/s Operation,” Aug. 2002.
    [15] IEEE Std 1394b-2000: IEEE standard for a high performance serial bus.
    [16] PCI Express™ Base Specification Revision 1.0a, April 15, 2003
    [17] Serial ATA II Electrical Specification Revision 1.0, 26-May 2004
    [18] IEEE Std. 802.3ae: IEEE standard for 10Gbps Ethernet.
    [19] C. H. Lin, C. N. Chen, Y. J Wang, J. Y. Hsiao and S. J. Jou, “"Parallel Scrambler for High-Speed Applications,” IEEE-T. Circuits and System II, 2006.
    [20] D. W. Choi, “Parallel Scrambling Techniques for Digital Multiplexers,” AT&T Tech. Jour. vol. 65, pp.123-136, Sept./Oct., 1986.
    [21] S. W. Seetharam, G. J. Minden, J. B. Evans, “A Parallel SONET Scrambler/Descrambler Architecture,” IEEE International Symposium on Circuits and Systems, vol.3, May 1993, pp.2011-2014.
    [22] A.X. Widmer and P.A. Franaszek, "A DC-Balanced Parti-tioned-Block, 8B/10B Transmission Code," IBM Journal of Res. and Dev., Vol. 27, Number 5, September 1983.
    [23] H. Y. Chen, C. H. Lin and S. J. Jou, “DC-balance Low-jitter Transmission Code for 4-PAM Signaling,” IEEE T. Circuits and System II, 2006.
    [24] C. H. Lin, C. N. Chen and S. J. Jou, “Adaptive Termination Resistors and architecture for High-Speed Transceiver,” VLSI Design, Automation and Test (VLSI-TSA-DAT), Apr. 2005, pp.96–99.
    [25] J. E. Rogers and J. R. Long, “A 10-Gb/s CDR/DEMUX with LC Delay Line VCO in 0.18-?m CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1781-7189, Dec. 2002.
    [26] J. Savoj and B. Razavi, ”A 10-Gb/s CMOS Clock and Data Recovery Circuit With a Half-Rate Binary Phase/Frequency Detector,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 13-21, Jan. 2003.
    [27] J. Savoj and B. Razavi, ”A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp 761-767, May. 2001.
    [28] J. Savoj and B. Razavi, “High-Speed CMOS Circuits for Optical Receivers,” Kluwer Academic Publishers, 2001.
    [29] S. Y. Sun, “An Analog PLL-Based Clock and Data Recovery Circuit with High Input Jitter Tolerance,” IEEE J. Solid-State Circuits, vol. 24, no.2, pp. 325-330, Apr. 1989.
    [30] Y. M. Greshishchev, P. Schvan, J. L. Showell, M. L. Xu, J. J. Ojha, and J. E. Rogers, ”A Fully Integrated SiGe Receiver IC for 10-Gb/s Data Rate,” IEEE J. Solid-State Circuits, vol. 35, no. 12, p. 1949-1957, Dec. 2000.
    [31] R. F. Rad, A. Nguyen, J. M. Tran, T. Greer, J. Poulton, W. J. Dally, J. H. Edmondson, R. Senthinathan, R. Rathi, M. J. E. Lee,and H. T. Ng, “A 33-mW 8-Gb/s CMOS Clock Multiplier and CDR for Highly Integrated I/Os,” IEEE J. Solid-State Circuits, vol. 39, no. 9, p. 1553-1561, Sep. 2004.
    [32] J. K. Kang, W. Liu and R. K. Cavin, III, “A CMOS high-speed data recovery circuit using the matched delay sampling technique,” IEEE J. Solid-State Circuits, vol.32, no.10, pp.1588 –1596, Oct. 1997.
    [33] S. B. Anand and B. Razavi, “A CMOS clock Recovery Circuit for 2.5-Gb/s NRZ Data,” IEEE J. Solid-State Circuits, vol. 36, no3, pp. 432-439, Mar. 2001.
    [34] K. Iravani, F. Saleh, D. Lee, P. Fung, P. Ta, and G. Miller, “Clock and Data Recovery for 1.25Gb/s Ethernet Transceiver in 0.35μm CMOS,” Custom Integrated Circuits Conference, 1999, pp. 261-264.
    [35] B. W. Garlepp, K. S. Donnelly, J. K. Pak, S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y. F. Chan, T. H. Lee, and M. A. Horowitz, “A portable Digital DLL for High-Speed CMOS Interface Circuits,” IEEE J. Solid-State Circuits, vol. 34, pp. 632-642, May 1999.
    [36] M. Fukaishi, S. Nakamura, a. Tajima, Y. Kinoshita, Y. Suemura, H. Suzuki, T. Itani, H. Miyamoto, N. Henmi, T. Yamazaki, and M. Yotsuyanagi, “A 2.125-Gb/s BiCMOS Fiber Channel Transmitter for Serial Data Communications,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1325-1329, Sep. 1999.
    [37] C. K. Yang, and K. L. Wong, “Analysis of Timing Recovery for Multi-Gbps PAM Transceivers,” Custom Integrated Circuits Conference, 2003, p. 67–72.
    [38] J. Kim, and D. K. Jeong, “Multi-Gigabit-Rate Clock and Data Recovery Based on Blind Oversampling,” IEEE Communications Magazine, vol. 41, no. 12, pp.68-74, Dec. 2003.
    [39] S. J. Jou, C. H. Lin, Y. H. Chen, and Z. H. Li, “Module generator of data recovery for serial link receiver,” System on Chip Conference, Sept. 2003, p.95-98.
    [40] Roland E. Best, “Phase-Locked Loops: Theory, Design, and Applications”, McGraw-Hill Inc., 2nd ed., 1993.
    [41] W. H. Lee, J. D. Cho and S. D. Lee, “A High Speed and Low Power Phase-Frequency Detector and Charge-Pump,” Asia and South Pacific Design Automation Conference, vol. 1, 1999, pp. 269-272.
    [42] B. Razavi, “Monolithic Phase-Locked Loops and Clock Recovery Circuits,” Sponsored by the IEEE Solid-State Circuits Society 1996.
    [43] J.G. Maneatis and M.A. Horowitz, “Precise delay generation using coupled oscillators,” International Solid-State Circuits Conference, Dec. 1993, pp. 1273-1282.
    [44] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no.3, pp. 331-343, Mar. 1996.
    [45] J.G. Maneatis, J. Kim, I. McClatchie, J. Maxey, M. Shankaradas, “Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL,” IEEE J. of Solid-State Circuits, vol. 38, no.11, p.p. 1795 – 1803, Nov. 2003.
    [46] J. G. Maneatis, “Low-jitter and process independent DLL and PLL based on self biased techniques,” IEEE J. of Solid-State Circuits, vol. 31, no.11, pp. 1723-1732, Nov. 1996.
    [47] C.K. K. Yang, “Design of High-Speed Serial Links in CMOS”, Sponsored by Center for Integrated Systems, Sun Microsystems, and LSI Logic Inc., 1998.
    [48] M.T. Wong, “A 2.5Gbps CMOS Serial Link Transceiver Design,” M.S. dissertation, Dept. of Electrical Engineering, NCU, Taiwan, June. 2002.
    [49] K. Yamguchi, M. Fukaishi, T. Sakamoto, N. Akiyama and K. Nakamura, “2.5 GHz 4-phase clock generator with scalable and no feedback loop architecture,” International Solid-State Circuits Conference, Feb. 2001, pp. 398-399.
    [50] B. R. Veillette, and G. W. Roberts, “On-Chip Measurement of the Jitter Transfer Function of Charge-Pump Phase-Locked Loops,” IEEE J. Solid-state Circuits, vol. 33, pp. 483-491, Mar. 1998.
    [51] Y. P. Fan, J. E. Smith, “On-die termination resistors with analog impedance control for standard CMOS technology,” IEEE J. Solid-State Circuits, vol.38, no.3, pp.361–364, Feb. 2003.
    [52] B. Nauta, M. B. Dijkstra, “Analog line driver with adaptive impedance matching,” IEEE J. Solid-State Circuits, vol.33, no.12, pp.1992-1998, Dec. 1998.
    [53] T. J. Gabara, S. C. Knauer,” Digitally adjustable resistors in CMOS for high-performance applications,” IEEE J. Solid-State Circuits, vol.27, no.8, pp. 1176-1185, Aug. 1992.
    [54] H. Conrad, “2.4 Gbit/s CML I/Os with integrated line termination resistors realized in 0.5 μm BiCMOS technology,” Bipolar/BiCMOS Circuits and Technology Meeting, pp.120-122, Sept. 1997.
    [55] D. J. Foley and M. P. Flynn, “A Low-Power 8-PAM Serial Transceiver in 0.5-μm Digital CMOS,” J. Solid-State Circuits, vol.37, no.3, pp.310-319, Mar. 2002.
    [56] D. Somasekhar and K. Roy, “Differential Current Switch Logic: A Low Power DCVS Logic Family,” IEEE J. Solid-state Circuits, vol. 31, no.7, pp. 981-991, July 1996.
    [57] W. J. McFarland, K. H. Springer, C. S. Yen, “1-Gword/s Pseudorandom Word Generator,” IEEE J. Solid-State Circuits, vol.24, no.3, pp.747-751, June 1989.
    [58] Fiber Channel-Methodologies for jitter Specification, T11.2/Project 1230/Rev 10, June. 1999.
    [59] Jitter Specification Made Easy: A Heuristic Discussion of Fibre Channel and Gigabit Ethernet Methods, Rev 0, Feb 6, 2001.

    QR CODE
    :::