跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許梓恂
Tzu-hsun Hsu
論文名稱: 發光二極體照明系統之色彩特性優化設計
Optimization on Color Characteristics for LED Lighting System
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 英文
論文頁數: 60
中文關鍵詞: 演色性色溫照明色彩發光二極體
外文關鍵詞: color rendering index, LED, light emitting diode, illuminant, color temperature
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於材料及製造技術上的進度,使得發光二極體的亮度及色彩逐漸增加並開始應用於照明上,因此發光效率、演色性、色溫等照明上的需求有開始受到重視。
    本文中提出了一套可配合發光二極體混光設計的優化方式,並以實際模擬實驗證明了此優化方式的效果。包括了提升演色性、尋找符合照明需求的最大發光效率、設計可調變色溫之標準太陽光源,除了照明需求,在顯示器背光源設計中,也可應用於背光源發效率及顯示色域的平衡優化設計。
    使用兩顆甚至更多數量的單色發光二極體混光的方式,配合一套可針對需求的照明特性進行混光組合條件優化的演算法,可有效的提升照明光源在各項照明指標上的特性;不需要重新設計發光二極體的製程結構或是尋找新的材料,可以降低製造成本,配合發光二極體驅動電路的設計,就可以配合需求產生更多樣的變化。


    Recently, advances in materials and manufacture have resulted in the commercial availability of light emitting diode (LED) with high luminance and dominant wavelengths spanning the entire visible spectrum. The applications of LED in illumination are up roaring, and solution with color properties, luminous efficacy, color rendering, color temperature, etc. are in urgent need.
    Therefore, an effective method for optimizing any color properties we require is very critical and necessary. To study new material of phosphor to combine with the LED chip or new LED structure to emit different spectrum could improve them. In addition, to combine with different kind of LEDs could achieve the same purpose and even with much lower cost. In this thesis, it has developed such an optimization method for combination with different color LEDs. This method allows for deriving the optimal mixing ratio of luminance of each LED in order to obtain the best color properties for illumination.
    By using this optimization method, a white LED whose color temperature (CT) is approximately 6500 K and color rendering index (CRI) is 70, can be improved its CRI better than 80 and its correlated color temperature (CCT) down to near 3000 K simultaneously. Moreover, it could produce one which is more close to the warm-white lighting, and it is possible to substitute for the incandescent lamp.
    Besides, the best color luminous efficacy could be also evolved from this optimization method while CRI is good enough to apply for indoor lighting. To structure an adjustable standard daylight source and to deal in a trad-off color gamut and luminous efficacy of display backlight are also able to use in this optimizing method.

    1 Introduction 1 1.1 Light Emitting Diode 1 1.2 Motivation 2 2 Color Science 4 2.1 Color 4 2.1.1 Light 5 2.1.2 Perceive Vision 6 2.2 Colorimetry 8 2.2.1 CIE 1931 RGB Color Space 9 2.2.2 CIE 1931 XYZ Color Space 9 2.2.3 Color Mixing 12 2.2.4 Uniform Chromaticity Diagrams 13 2.2.5 Color Temperature 15 2.2.6 Color Rendering Index 16 2.2.7 Luminous Efficacy 19 2.2.8 CIE Standard Illuminant 19 2.2.9 Color Gamut 21 3 Optimal Mixing for LEDs 23 3.1 Simulated Annealing Method 23 3.2 Optimization Scheme 25 4 Practical Applications 28 4.1 Lighting with Better CRI 28 4.1.1 Scheme 29 4.1.2 Result 31 4.1.3 Discussion 32 4.2 Lighting with Maximal Luminous Efficacy 34 4.2.1 Scheme 35 4.2.2 Result 37 4.2.3 Discussion 39 4.3 Tunable Standard Light Sources 41 4.3.1 Scheme 42 4.3.2 Result 44 4.3.3 Discussion 46 4.4 LED Backlight Module 47 4.4.1 Scheme 48 4.4.2 Result 49 4.4.3 Discussion 51 5 Conclusion 53 Reference 55

    [1] N. Holonyak and S. F. Bevacqua, ”Coherent (Visible) light emission from Ga Junctions”, Appl. Phys. Lett. 1 (4), pp. 82-83, 1962.
    [2] S. Nakamura, T. Mukai, M. Senoh, ”Candela-Class High-Brightness In-GaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes.”, Appl. Phys. Lett., Vol. 64 (13), pp. 1687-1689, 1994.
    [3] S. Nakamura and G. Fasol, ”The Blue Laser Diode. Berlin, Germany: Springer”, pp. 216-219, 1997.
    [4] X. Guo, J. W. Graff, and E. F. Schubert, ”Photon-Recycling Semiconductor Light-Emitting Diodes”, in IEDM Tech. Dig., pp. 600-605, 1999.
    [5] F. Hide, P. Kozody, S. P. DenBaars, and A. J. Heeger, ”White Light from In-GaN/conjugated Polymer Hybrid Light-Emitting Diodes”, Appl. Phys. Lett., Vol. 70, pp. 2664-2666, 1997.
    [6] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, ”White-Light Emission from InGaN/GaN Multiquantum Well Light-Emitting Diodes with Si and Zn Co-doped Active Well Layer”, IEEE Photon. Technol. Lett., Vol. 14, pp. 450-452, Apr. 2002.
    [7] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, Senior Member, IEEE, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, ”White-Light Emission From Near UV InGaN-GaN LED Chip Precoated With Blue/Green/Red Phosphors”, IEEE Photon. Technol. Lett. Vol. 15, pp. 18-20, 2003.
    [8] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, ”AlGaN/GaN Quantum Well Ultraviolet Light-Emitting Diodes”, Appl. Phys. Lett., Vol. 73 (12), pp. 1688-1690, 1998.
    [9] K. Muray, B. Kranicz, Y. Ohno, and J. Schanda, ”Comparison Measurements of LEDs: Spectral Power Sistribution”, Proc. CIE 2nd Expert Symposium on LED Measurements, Gaithersburg, MD, pp. 52-55, 2001.
    [10] D. B. Judd, G. Wyszecki, ”Color in Business Science and Industry”, 3rd Edition, John Wiley & Sons, New York, 1975.
    [11] R.W.G. Hunt, ”Measuring Colour”, 3rd Edition, Fountain Presss, England, 1998.
    [12] Roy S. Berns, ”Billmeyer and Saltzman’s Principles of Color Technology”, 3rd Edition, John Wiley & Sons, New York, 2000.
    [13] Jon Yngve Hadeberg, ”Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches”, PH.D. Thesis, Ecole Nationale Sup?rieure des T?l?communications, 1999.
    [14] D. S. Falk, D. R. Brill, and D. G. Stork, ”Seeing the Light: Optics in Nature, Photography, Color, Vision, and Holography”, Jhon Wiley and Sons, New York, 1986.
    [15] A. Stockman, D. I. A. MacLeod, N. E. Johnson, ”Spectral Sensitivities of the Human Cones”, J. Opt. Soc. Amer. A, Vol. 10, pp. 2491-2521. 1993.
    [16] J. Schanda, ”Current CIE Work to Achieve Physiologically-correct Color Metrics”, in W. G. K, Backhaus, R. Kliegl, and J. S. Werner, Eds., Color Vision Prespectives from Different Disciplines, Walter de Gruyter, Berlin, pp. 307-318, 1998.
    [17] T. Young, ”On the Theory of Light and Colours”, Philos. Trans., pp. 12-48, 1802.
    [18] G. Palmer, ”Theory of Colours and Vision”, S. Leacroft, Londo, 1777.
    [19] R. A. Weale, ”Trichromatic Ideas in the Seventeenth and Eighteenth Centuries”, Nature, Vol. 179, pp. 648-651, 1957.
    [20] H. Grassmann, ”On the Theory of Compiund Colors”, London, Edinb. Dublin Philios. Mag. J. Sci., Vol. 7(4), pp. 254-264, 1854.
    [21] W. D. Wright, ”A Re-determination of the Trichromatic Coefficients of the Spectral Color”, Trans. Opt. Soc. London, Vol. 30, pp. 141-164, 1928-1929.
    [22] W. D. Wright, ”A Re-determination of the Mixture Curves of the Spectrum”, Trans. Opt. Soc. London, Vol. 31, pp. 201-211, 1929-1930.
    [23] J. Guild, ”The Colorimeteric Properties of the Spectrum”, Philos. Trans. R. Soc. London, Ser. A, Vol. 230, pp. 149-187, 1931.
    [24] ”Coloremetry”, 3rd Edition, in CIE 15 Technical Report, CIE, 2004.
    [25] D. L. MacAdam, ”Visual Sensitivities to Color Differences in Daylight”, J. Opt. Soc. Amer., Vol. 32, pp. 247-274, 1942.
    [26] D. L. MacAdam, ”Specification of Small Chromaticity Differences”, J. Opt. Soc. Amer., Vol. 33, pp. 18-26, 1943.
    [27] D. E. Judd, ”ensibility to Color-Temperature Change as a Function of Temperature”, J. Opt. Soc. Amer., Vol. 23, pp. 7-14, 1933.
    [28] I. Ashdown, ”Chromaticity and Color Temperature for Architectural Lighting”, Solid State Lighting II, Proc. SPIE 4776, pp. 51V60, 2002.
    [29] K. L. Kelley, ”Lines of Constant Correlated Color Temperature Based on MacAdam’s (u,v) Uniform Chromaticity Transformation of the CIE Diagram”, J. Opt. Soc. Amer. , Vol. 53(8), pp. 999-1002, 1963.
    [30] ”Method of Measuring and Specifying Colour Rendering Properties of Light Sources,” in CIE 13.3-1994 Technical Report, CIE, 1994.
    [31] ”CIE Standard Illuminants for Colorimetry”, in CIE Standard S005, 1999.
    [32] H. Terstiege, ”Artificial Daylight for Measurement of Optical Properties of Materials”, Color Res. Appl., Vol. 14(3), pp. 131-138, 1989.
    [33] ”A Method for Assessing the Quality of Daylight Simulators for Colorimetry”, in CIE 51.2 Technical Report, 1999.
    [34] Wyszecki, Stiles, ”Color Science”, 2nd Edition, John Wiley & Sons, New Tork, 1982.
    [35] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, ”Optimization by Simulated Annealing”, Science, Vol. 220(4598), pp. 671-680, 1983.
    [36] S. Kirkpatrick, ”Optimization by Simulated Annealing: Quantitative Studies”, Journal of Statistical Physics, Vol. 34, pp. 975-986, 1984.
    [37] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, ”Equation of State Calculations by Fast Computing Machines”, Journal of Chemical Physics, Vol. 21, pp. 1087-1092, 1953.
    [38] W. Press, S. Teukolsky, T. Vetterling, B. Flannery, ”Numerical Recipes in C: The Art of Scientific Computing”, 2nd Edition, Cambridge University Press, New York, 1992.
    [39] M. P. Vecchi and S. Kirkpatrick, ”Global Wiring by Simulated Annealing”, IEEE Transactions on Computer Aided Design, Vol. 2 (4), pp. 215-222, 1983.
    [40] K. Sakuma, K.Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. Xie, and T. Suehiro, ”Warm-White Light-Emitting Diode with Yellowish Orange SiAlON Ceramic Phosphor”, Optics Letters, Vol. 29, pp. 2001-2003, 2004.
    [41] Hong-Yu Chou, Tzu-hsun Hsu, and Tsung-Hsun Yang, ”Effective Method for Improving Illuminanting Properties of White-Light LEDs”, Proceedings of SPIE Vol. 5739, pp. 33-41, 2005.
    [42] H. Ries, I. Leike, J. Muschaweck, ”Optimized Additive Mixing of Colored Light- Emitting Diode Sources”, Opt. Eng., Vol. 43(7), pp. 1531-1536, 2004.
    [43] Y. Ohno, ”Color Issues of White LEDs”, OIDAWorkshop Preliminary Report, Oct. 26-27, 2000.
    [44] A. Zukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, R. Gaska, ”Optimization of Multichip White Solid-State Lighting Source with Four or More LEDs”, Proceedings of SPIE Vol. 4445, pp. 148-155, 2001.
    [45] S. Muthu,F. J. P. Schuurmans, M. D. Pashley, ”Red, Green, and Blue LEDs for White Light Illumination”, IEEE Journal on SelectedD Topics in QuantumM Electronics, Vol. 8(2), pp. 333-338, 2002.
    [46] A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, ”Optimization of White Polychromatic Semiconductor Lamps”, Applied Physic Letters, Vol. 80(2), pp. 234-236, 2002.
    [47] D. L. MacAdam, ”Maximum Attainable Luminous Efficiency of Various Chromaticities”, J. Opt. Soc. Amer. , Vol. 120, pp. 40, 1950
    [48] C. F. Wall, A. R. Hanson, and J. A. F. Taylor, ”Constructiona of a Programmable Light Source for Use as a Display Calibration Artefact”, Proc. SPIE 4295, pp. 259-266, 2001.
    [49] C. C. Miller and Y. Ohno, ”Luminous Intensity Measurements of Light Emitting Diodes at NIST”, Proc. CIE 2nd Expert Symposium on LED Measurements, Gaithersburg, MD, pp. 28-32, 2001.
    [50] C. C. Miller and Y. Ohno, ”Total Luminous Flux Calibrations of LEDs at NIST”, Proc. Compound Semiconductor Manufacturing Exposition, Boston, MA, July 2001.
    [51] S. W. Brown, C. Santana, and G. P. Eppeldauer, ”Development of a Tunable LED-Based Colorimetric Source”, Journal of Research of the National Institute of Standards and Technology, Vol. 107, pp. 363-371, 2002.
    [52] ”Power Light Source Luxeon, Emitter Technical Datasheet DS25”, LUMILEDS.
    [53] ”Power Light Source Luxeon, Emitter Technical Data Datasheet DS45”, LUMILEDS.
    [54] ”Power Light Source Luxeon, Emitter Technical Data Datasheet DS47”, LUMILEDS.
    [55] N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, ”New Color Filter for Light-Emitting Diode Back Light”, The Japan Society of Applied Physics, Vol. 42 Part 1 No. 4A, pp. 1637-1641, 2003.
    [56] R. Harada, K. Ishikawa, and H. Nishijo, Proc. Symposium Information Display, Long Beach, 2000, pp. 613.
    [57] N. Moriya, A. Suemasu, Proc. Symposium Information Display, San Jose, 2001, pp. 333.
    [58] S. Shioda, T. Nishijima, and K. Ueda, Proc. International Display Workshop, Kobe, 1998, pp.271.
    [59] T. Uchida, ITEJ Tech. Rep., Vol. 5, pp. 7, 1981.
    [60] ”IEC/4WD 61966-2-1: Colour Measurement and Management in Multimedia Systems and Equipment - Part 2-1: Default RGB Colour Space - sRGB”, International Electrotechinacl Commision, 1998.

    QR CODE
    :::