跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宗孝
Tsung-Hsiao Lin
論文名稱: 近紅外光單晶鍺薄膜光偵測器
Near Infrared Crystal Germanium film Photodetector
指導教授: 陳昇暉
Sheng-Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 90
中文關鍵詞: 光偵測器鍺薄膜濺鍍鈍化金屬-半導體-金屬蕭特基接觸
外文關鍵詞: photodetector, germanium thin film, suputtering, passivation, metal-semiconductor-metal, schottky
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為製作近紅外光之金屬-鍺-金屬光偵測器(metal-germanium-metal photodetector)並加以量測及分析。鍺的吸收波段恰可應用於光通訊常用之近紅外光波長850nm、1310nm與1550nm,但因為鍺本身價格昂貴,故本實驗先利用濺渡方式在矽基板上長出單晶鍺薄膜後再製作光偵測器,藉由此方式不僅可以保留鍺在近紅外光出色的表現也可以大大降低生產成本。
      本研究使用指叉狀電極(Interdigitated electrode)做為光偵測器之電極,其目的是利用簡單的製程做出高頻的元件並希望可將其應用於IC設計當中。本實驗主要使用三種不同基板製作光偵測器,分別是矽基板、鍺基板與鍍在矽基板上的鍺薄膜,除了響應度(responsivity)及頻率響應(frequency response)的量測與分析外,還會分析膜品質對於元件的影響。本實驗矽基板之光偵測器響應度最高可達0.46A/W,頻率響應可達43.35MHz,而鍺基板跟鍺薄膜的響應度則分別為0.257A/W及2.71mA/W。


    The particular metal-germanium-metal photodetector (PD) is investigated in this research. Germanium has good absorption coefficient in near infrared such as 850nm, 1310nm and 1550nm which are commonly used in optics communication. Unfortunately, the prohibitive cost of germanium wafer makes it difficult to popularize. Radio frequency (RF) sputtering system is used to deposit single crystal intrinsic germanium film to fabricate the photodetector. It not only keeps performance of Ge but also reduces the cost more than a factor of five.
    In this investigation, interdigitated electrodes are used on the devices with the purposes of a relative easy process for high-speed devices and a comparable process for the integrated circuit. Three different substrates are used to fabricate photodetectors including n-Si, p-Ge and i-Ge/n-Si. Responsivities and frequency responses are measured and analyzed. Besides, the effect of the Ge thin film on the device was also discussed. The responsivity of PDs are 0.46A/W, 0.257A/W and 2.71mA/W for n-Si, p-Ge and i-Ge/n-Si respectively. The frequency response can be achieved 43.35MHz for Si-based MSM PD.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Literatures Review 2 1.3 Motivations 5 Chapter 2 Device Operation Principles 6 2.1 Schottky Contact and Ohmic Contact 6 2.2 Current Transport Processes 10 2.3 Operation Principles 12 2.3.1 Principles 12 2.3.2 Responsivity 15 2.3.3 Response Time 15 2.4 Surface Passivation 16 2.4.1 Chemical Passivation 16 2.4.2 Field Effect Passivation 17 2.4.3 Passivation of Germanium 18 Chapter 3 Experiments 21 3.1 Design of Interdigitated electrode 21 3.2 Simulation of Responsivity 23 3.3 Simulation of Response time 24 3.4 Device Fabrication processes 32 Chapter 4 Equipment 35 4.1 Cluster Sputter system 35 4.2 Dual E-gun evaporation System 37 4.3 Equipment of measuring Responsivity 38 4.4 Measurement system of frequency response 39 Chapter 5 Results and Discussions 40 5.1 SiO2:50nm/ Au:80nm/ Cr:20nm/ n-Si:325um 40 5.1.1 Responsivity 41 5.1.2 Response time (Frequency Response) 45 5.1.3 Passivation 48 5.2 Ta2O5:50nm/ Al:100nm /p-Ge 50 5.2.1 Responsivity 50 5.2.2 Response time (simulation) 54 5.2.3 Passivation 55 5.3 Al:100nm/Ta2O5:50nm/i-Ge film:550nm/n-Si and Al:100nm/SiO2:50nm /i-Ge film:550nm /n-Si 57 5.3.1 Responsivity 58 5.3.2 Response time (simulation) 65 5.3.3 Passivation 67 Chapter 6 Conclusions 69 References 71

    1. H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada and L.C. Kimerling, High-quality Ge epilayers on Si with low threading-dislocation densities. Applied Physics Letters, 1999. 75(19): p. 2909-2911.
    2. Y. Fukuda and Y. Kohama, High quality heteroepitaxial Ge growth on (100) Si by MBE. Journal of Crystal Growth, 1987. 81(1–4): p. 451-457.
    3. M.T. Currie, S.B. Samavedam, T.A. Langdo, C.W. Leitz and E.A. Fitzgerald, Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Applied Physics Letters, 1998. 72(14): p. 1718-1720.
    4. D. Choi, Y. Ge, J.S. Harris, J. Cagnon and S. Stemmer, Low surface roughness and threading dislocation density Ge growth on Si. Journal of Crystal Growth, 2008. 310(18): p. 4273-4279.
    5. V.A. Shah, A. Dobbie, M. Myronov and D.R. Leadley, Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001). Thin Solid Films, 2011. 519(22): p. 7911-7917.
    6. M. Green, X. Hao and C.Y. Tsao, A method of forming a germanium layer on a silicon substrate and a photovoltaic device including a germanium layer. 2012, Google Patents.
    7. 陳冠翔,在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究,國立中央大學光電科學與工程學系碩士論文,2014
    8. http://www.laserfocusworld.com/articles/2010/08/avalanche-photodiodes.html.
    9. S.Y. Chou, Y. Liu and T.F. Carruthers, 32 GHz metal‐semiconductor‐metal photodetectors on crystalline silicon. Applied Physics Letters, 1992. 61(15): p. 1760-1762.
    10. M.Y. Liu, E. Chen and S.Y. Chou, 140‐GHz metal‐semiconductor‐metal photodetectors on silicon‐on‐insulator substrate with a scaled active layer. Applied Physics Letters, 1994. 65(7): p. 887-888.
    11. H.C. Lee and B. Van Zeghbroeck, A novel high-speed silicon MSM photodetector operating at 830 nm wavelength. Electron Device Letters, IEEE, 1995. 16(5): p. 175-177.
    12. L.L. Hong, C.T. Chang, C.Y. Ann, T.W. Chin and H.J. Wong, Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer. Electron Devices, IEEE Transactions on, 1998. 45(9): p. 2018-2023.
    13. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L.D. Gaspare, E. Palange and F. Evangelisti, Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Applied Physics Letters, 1998. 72(24): p. 3175-3177.
    14. D. Buca, S. Winnerl, S. Lenk, S. Mantl and C. Buchal, Metal–germanium–metal ultrafast infrared detectors. Journal of Applied Physics, 2002. 92(12): p. 7599-7605.
    15. M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, J.M. Fédéli, J.F. Damlencourt, J.M. Hartmann and S. Kolev, Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55μm operation. Applied Physics Letters, 2005. 87(23): p. 231109.
    16. O. Jungwoo, S.K. Banerjee and J.C. Campbell, Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers. Photonics Technology Letters, IEEE, 2004. 16(2): p. 581-583.
    17. http://www.ctimes.com.tw/art/print.asp?O=HJM959K5NYOAR-STD9.
    18. http://en.wikipedia.org/w/index.php?title=Ohmic_contact&oldid=663114925.
    19. http://www.ee.sc.edu/personal/faculty/simin/ELCT566/19%20Schottky%20
    Photodiodes.pdf.
    20. Y.C. Lin, Vertical Polymer Transistor with high on/off ratio and low operation voltage, in Institute of Physics. 2009, National Chiao Tung University.
    21. 施敏、李明逵 著,半導體元件物理與物理技術,第三版,國立交通大學出版社,2013
    22. S.C. Jain and D.J. Roulston, A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers. Solid-State Electronics, 1991. 34(5): p. 453-465.
    23. S.M. Sze and K.K. Ng, Physics of semiconductor devices. 2006: John Wiley & Sons.
    24. 魏燕伶,具非晶質矽合金調變周期類超晶格薄膜複層脂低暗電流高熱穩定度平面矽基金屬-半導體-金屬光檢測器,國立中央大學電機工程學系碩士論文,2004
    25. A. Rogalski and M. Razeghi. Narrow-gap semiconductor photodiodes. 1998.
    26. Q.Y. Tong, E. Schmidt, U. Gösele and M. Reiche, Hydrophobic silicon wafer bonding. Applied Physics Letters, 1994. 64(5): p. 625-627.
    27. S. Helland, Electron Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells, in Department of Materials Science and Engineering. 2011, Norwegian University of Science and Techonology.
    28. 黃鼎育,IV 族半導體基板鈍化層研究,國立中央大學光電科學與工程學系碩士論文,2014
    29. R.N. Hall, Electron-Hole Recombination in Germanium. Physical Review, 1952. 87(2): p. 387-387.
    30. Y.Y. Chen., H. Chang, Y. Chi and C. Huang, GeO2 Passivation for Low Surface Recombination Velocity on Ge Surface. Electron Device Letters, IEEE (Volume:34 , Issue: 3 ) 2013: p. 444 - 446
    31. M. Takenaka, K. Morii, M. Sugiyama, Y. Nakano and S. Takagi, Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping. Optics Express, 2012. 20(8): p. 8718-8725.
    32. S.V. Averine, Y.C. Chan and Y.L. Lam, Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures. Solid-State Electronics, 2001. 45(3): p. 441-446.
    33. J.E. Bowers and C.A. Burrus, Ultra-wideband long-wavelength PIN photodetectors. J Lightwave Technol, 1987. 5(10): p. 1339-1350.
    34. J. Burm, K.I. Litvin, W.J. Schaff and L.F. Eastman, Optimization of high-speed metal-semiconductor-metal photodetectors. Photonics Technology Letters, IEEE, 1994. 6(6): p. 722-724.
    35. K. Kato, Ultrawide-band/high-frequency photodetectors. Microwave Theory and Techniques, IEEE Transactions on, 1999. 47(7): p. 1265-1281.
    36. http://ocw.tudelft.nl/fileadmin/ocw/courses/SolidStatePhysics/res00018/cha
    pter5_OCW.pdf.
    37. http://www.solecon.com/sra/rho2cc.htm.
    38. http://people.virginia.edu/~jcb6t/Semiconductor_devices_public_files/Refer
    ence/v_versus_e.htm.
    39. H. Hodara, Fiberoptic receiver performance: A tutorial review. Fiber and Integrated Optics, 1983. 4(3): p. 233-285.
    40. G.W. Farnell, I.A. Cermak, P. Silverster and S.K. Wong, Capacitance and Field Distributions for Interdigital Surface-Wave Transducers. Sonics and Ultrasonics, IEEE Transactions on, 1970. 17(3): p. 188-195.
    41. M. Ito and O. Wada, Low dark current GaAs metal-semiconductor-metal (MSM) photodiodes using WSix contacts. Quantum Electronics, IEEE Journal of, 1986. 22(7): p. 1073-1077.
    42. H. Beneking, Gain and bandwidth of fast near-infrared photodetectors: A comparison of diodes, phototransistors, and photoconductive devices. Electron Devices, IEEE Transactions on, 1982. 29(9): p. 1420-1431.
    43. S.Y. Chou and M.Y. Liu, Nanoscale tera-hertz metal-semiconductor-metal photodetectors. Quantum Electronics, IEEE Journal of, 1992. 28(10): p. 2358-2368.
    44. S. Sun, Y. Sun, Z. Liu, D.I. Lee, S. Peterson and P. Pianetta, Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions. Applied Physics Letters, 2006. 88(2): p. 021903.
    45. http://www.wisegeek.org/what-is-rf-sputtering.htm.
    46. 王宣文,以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響,國立中央大學光電科學與工程學系碩士論文,2012
    47. 李京樺, 以矽朋合金靶製作異質接面太陽能電池國立中央大學光電科學與工程學系碩士論文,2014
    48. 林正軒, 三維表面電漿元件光電轉換特性之研究國立中央大學光電科學與工程學系碩士論文,2014
    49. 李順昌, 三族氮化物知蕭特基接面內部增益研究,國立高雄大學電機工程學系碩士班(光電組),2006
    50. J.D. Hwang and E.H. Zhang, Effects of a a-Si:H layer on reducing the dark current of 1310 nm metal–germanium–metal photodetectors. Thin Solid Films, 2011. 519(11): p. 3819-3821.
    51. Z. Liu, X. Hao, A. Ho-Baillie, C.-y. Tsao and M.A. Green, Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering. Thin Solid Films, 2015. 574(0): p. 99-102.
    52. A.J. Chiquito, C.A. Amorim, O.M. Berengue, L.S. Araujo, E.P. Bernardo and E.R. Leite, Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. Journal of Physics-Condensed Matter, 2012. 24(22).
    53. W.G. Oldham and A.G. Milnes, Interface states in abrupt semiconductor heterojunctions. Solid-State Electronics, 1964. 7(2): p. 153-165.
    54. T. Nagano, M. Tsutsui, R. Nouchi, N. Kawasaki, Y. Ohta, Y. Kubozono, N. Takahashi and A. Fujiwara, Output Properties of C60 Field-Effect Transistors with Au Electrodes Modified by 1-Alkanethiols. The Journal of Physical Chemistry C, 2007. 111(19): p. 7211-7217.
    55. X.L. Tang, H.W. Zhang, H. Su and Z.Y. Zhong, A novel spin-polarized transport effect based on double-Schottky barriers. Physica E: Low-dimensional Systems and Nanostructures, 2006. 31(1): p. 103-106.
    56. T. Nishimura, K. Kita and A. Toriumi, Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Applied Physics Letters, 2007. 91(12): p. 123123.
    57. E.H. Rhoderick, Metal Semiconductor Contacts 1988.
    58. 李正中 著,膜光學與鍍膜技術,第七版,藝軒圖書文具有限公司,2012

    QR CODE
    :::