| 研究生: |
劉富維 Fu-Wei Liu |
|---|---|
| 論文名稱: |
RP-LaSr3Fe3-xMxO10(MX = Co0~1.5或Mn0~0.5)之合成及其在氧催化特性之差異 On the synthesis of RP-LaSr3Fe3-xMxO10 (MX = Co0~1.5或Mn0~0.5) and their characterization of oxygen catalysis |
| 指導教授: |
林景崎
Jing-Chie Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 赤鐵礦 、鈣鈦礦 、氧還原 、氧釋放 、光電化學水分解 、共觸媒 |
| 外文關鍵詞: | Photoelectrochemical water splitting, Cocatalyst |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在探討關鍵性電化學與光電化學的電極儲能材料,研究目標有三: (1)依Pechini法合成Ruddlesden-Popper (RP)結構之RP-LaSr3Fe3-xMxO10(MX = Co0~1.5或Mn0~0.5)錳鈷摻雜物,並探討其對氧還原反應 (Oxygen reduction reaction, ORR) 與氧氣釋出反應 (Oxygen evolution reaction, OER)之催化活性。(2) 以簡單之沉積退火法(Deposition-Annealing method, DA),探討製備赤鐵礦製程參數,以獲致最佳光陽極之條件。(3) 結合第(1)、(2)技術,將RP-LaSr3Fe3-xMxO10裝載於最佳赤鐵礦製備光陽極,探討是否會增進光電化學分解水之效率。
結果顯示: (1) RP-LaSr3Fe3-xMxO10(M = Co, Mn)之ORR/OER催化活性高於純RP-LaSr3Fe3O10,摻鈷之樣品效率更高於摻錳者,尤其摻鈷量在x=1.5催化活性最高,在定電流ORR(3 mA/cm2 )/OER(10 mA/cm2)下之電位差值(ΔE) 約為0.93 V,比文獻值(1.00 V~1.16V)小,顯示雙催化效率更極佳。(2) 以前驅物在5 mM進行10次沉積退火(即10 DA)所得之赤鐵礦光陽極,其光暗差電流最佳(即照光電流-暗室電流),可達6.3 mA/cm2。 (3) 裝載RP-LaSr3Fe1.5Co1.5O10之赤鐵礦光陽極,可藉RP-LaSr3Fe1.5Co1.5O10提升OER催化效率,因而增進光陽極之水分解效率,光暗差之電流提升約108%。
This study facilitated the design of critical element for clean energy-conversion and energy-storage electrode material. The main three goals of research were as follow, (1) we attempted to fabricate the RP-LaSr3Fe3-xMxO10 with B-site cations substitution with Mn and Co via Pechini method. Effects of B-site cation kinds and components on the catalytic property for ORR/OER of RP-LaSr3Fe3-xMxO10 were investigated; (2) the α-Fe2O3 photoanode were fabricated on F-doped SnO2 glass substrate via a facile Deposition-Annealing (DA) process. Influence of synthetic parameters on photoelectrochemical performance of α-Fe2O3 photoanodes were characterization; (3) with above technique on electrode, heterojunction of RP-LaSr3Fe3O10/α-Fe2O3 were carried out which facilitated a enhancement for photoelectrochemical water splitting.
The developmental results were summarized below: (1) RP-LaSr3Fe1.5Co1.5O10 revealed a higher ORR/OER catalytic activity than other B-site cation kinds or components. The different in potential between the ORR at 3 mA/cm2 and the OER at 10 mA/cm2 was measured (ΔE =0.93 V), which was lower than data reported elsewhere demonstrating high bifunctional catalytic avtivity. (2) Result from the synthesis of α-Fe2O3, the sample prepared via 5 mM precusor and 10 DA cycles had better physical and chemical properties than synthetic parameters. The maximum photocurrent could reach 6.3 mA/cm2. (3) The modification of the RP-LaSr3Fe1.5Co1.5O10/hematite heterojunction photoanodes facilitated the electron transfer at the electrode/electrolyte interface and thus enhanced the 108% of efficient on photoelectrochemical water splitting. Compared to noble material, RP-LaSr3Fe3-xMxO10 have been employed for the synthesis of the heterojunction photoanodes via a simple route. The photoelectrochemical results have great important, both from scientific and an economical point of view.
[1] A. Fujishima, K. Honda, Nature 238,37(1972).
[2] H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, H. W. Huang, T. S. Chan, R.S. Liu, D. P. Tsai, Small 9, 2926 (2013).
[3] C. W. Lai, S. Sreekantan, J. Alloy Compd. 547,43 (2013).
[4] M. C. Huang, T. H. Wang, S. H. Cheng, J. C. Lin, W. H. Lan, C. C. Wu,W. S. Chang, Nanosci. Nanotechnol. Lett. 6, 210 (2014).
[5] J. Cai, S. Li, Z. Li, J. Wang, Y. Ren, G. Qin, J. Alloy Compd. 574 ,421(2013).
[6] T. Takeguchi , T. Yamanaka , H. Takahashi , H.Watanabe,
T. Kuroki, H. Nakanishi , Y. Orikasa , Y. Uchimoto ,
H. Takano , N. Ohguri ,M. Matsuda, T. Murota , K. Uosaki ,W. Ueda, J. Am. Chem. Soc., 135,30 (2014).
[7] C.-H. Hsu, C.-H. Chen, D.-H. Chen, J. Alloy Compd. 554 (2013) 45.
[8] J. Ran, J. Zhang , J. Yu , M. Jaroniec, S. Z. Qiao, Chemical Society Reviews 43,7787-7812(2014).
[9] J. Yang, D. Wang, H. Han, C. Li, Accounts of chemical research 46,8 (2013).
[10] N. Ohguri ,M. Matsuda, T. Murota , K. Uosaki ,W. Ueda, J.Suntivich. H. A., S. H. Yang. J.Electrochem. Soc.14, 157 (2010).
[11] R. Banos, F. Manzano-Agugliaro , F.G. Montoya, C. Gil, A. Alcayde, J. Gómez, Renewable and Sustainable Energy Reviews,15,4(2011)
[12] J. Sunarso , A. A. J. Torriero , W. Zhou, P. C. Howlett , M. Forsyth , J. Phys. Chem. C, 116, 9(2012)
[13] W. G. Hardin , J. T. Mefford , D. A. Slanac , B. Patel , X. Wang , S. Dai , X. Zhao , R. S. Ruoff , K. P. Johnston , K. J. Stevenson, Chem. Mater., 26, 11(2014)
[14] J. Suntivich, K. J.May, H. A. Gasteiger, J. B. Goodenough,
Y. S. Horn, Science, 334, 6061(2012)
[15] A. Kudo ,Y. Miseki, Chem. Soc. Rev., 38, 253-278(2009)
[16] M. C. Huang, T.H. Wang, C. C. Wu, W. S. Chang, J. C. Lin, T. H.
Yen, Ceramics International ,40, 7(2014)
[17] K. Zhang, D. Jing, Q. Chen, L. Guo, Int J Hydrovgen Energy 35,2048(2010).
[18] W. S. Chang, C. C. Wu, M. S. Jeng, K. W. Cheng, C. M. Huang, T. C. Lee,Mater Chem Phys 120,307(2010).
[19] A.O. Ibhadon, P. Fitzpatrick, Catalysts ,3,189-218(2013).
[20] M. G. Ahmed. T. A. Kandiel, A. Y. Ahmed, I. Kretschmer, F. Rashwan, D. Bahnemann, J. Phys. Chem. C, 119, 5864(2015)
[21] T. Poux, F.S. Napolskiy, T. Dintzer, G. Kéranguéven, S. Ya. Istomin, G.A. Tsirlina, E.V. Antipov, E.R. Savinova, Catalysis Today, 189,1(2012).
[22] J. Du , T. Zhang , F. Cheng ,W. Chu, Z. Wu, J. Chen , Inorg. Chem., 53,17(2014)
[23] K. Kinoshita, Electrochemical Oxygen Technology,1992
[24] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, J. J. Energy Environ. Sci. 2011, 4, 3167
[25] F. Cheng, J. Chen, Chemical Society Reviews,. 2012, 41, 2172
[26] J. Du, T. Zhang, F. Cheng, W.g Chu, Z. Wu, J. Chen, Inorg. Chem., 53, 17(2014)
[27] S. K. Mohapatra, S. E. John, S. Banerjee, M. Misra, Chem. Mater.
21, 3048 (2009).
[28] T. H. Wang, M. C. Huang, F. W. Liu, Y. K. Hsieh, W. S. Chang, J. C. Lin, C., F. Wang, RSC Adv. 4,4463(2014).
[29] A. B. Murphy, L. K. Randeniya, I. C. Plumb, I. E. Grey, Horne, Int J Hydrogen Energy 31, 1999(2006).
[30] H. Tanaka, M. Misono, Current Opinion in Solid State and Materials Science, 5,5(2011)
[31] 黃茂嘉,奈米氧化鋅結構之電化學研製及其在發光二極體之應用,國立中央大學碩士論文,民國100年。
[32] 吳斌瑞,以電化學方法在鋅箔上製備氧化鋅奈米結構,國立中央大學碩士論文,民國100 年。
[33] K. J. J. Mayrhofer, S. J. Ashton, J. Kreuzer and M. Arenz,
Int.J. Electrochem. Sci., 4, 1–8(2009).
[34] L. GenieÁ s, R. Faure, R. Durand, Electrochimica Acta 44, 1317 (1998).
[35] J.Y. Lee, J.S. Swinnea, H. Steinfink, W.M. Reiff, S. Pei, J.D. Jorgensen, Journal of Solid State Chemistry, 103, 1(1993).
[36] T. Armstrong, F. Prado, A. Manthiram, Solid State Ionics, 40, 1(2001).
[37] Z. Xu, J. Liang, L. Zhou, Open Journal of Inorganic Non-metallic materials, 3, 58-65(2013).
[38] G. Wang , Y. Ling , D. A. Wheeler , K. E. N. George,
K. Horsley ,C. Heske, J. Z. Zhang , Y. Li, Nano Lett., 11,8(2011).
[39] S. Gialanella, F. Girardi, G. Ischia, I. Lonardelli, Maurizio, Mattarelli, M. Montagna, J Therm Anal Calorim 102,867–873(2010)
[40] E. Caudron, A. Tfayli, C. Monnier, M. Manfait, P. Prognon,
D. Pradeau, J. P . Biomed. Anal. 54, 866(2011).
[41] F. Froment, A. Tournié, P. Colomban, J. Raman Spectrosc. 39, 560 (2008).
[42] N. Beermann, L. Vayssieres, S. E. Lindquist, J. Electrochem.Soc. ,147, 7(2000).
[43] V. Carvalho, R. Luz, B. H. Lima, F. N. Crespilho, E. R.Leite, F. L. Souza, J. Power Sources 205,525(2012).
[44] M. G. Ahmed, T. A. Kandiel, A. Y. Ahmed, I. Kretschmer,
F. Rashwan, D. Bahnemann, J. Phys. Chem. C, 119, 5864−5871(2015).
[45] N Velinov, N Brashkova, V Kozhukharov, Ceramics, 49,29-33 (2005)
[46] M. Diab , T. Mokari, Ingorganic Chemistry, 54, 2304-2309(2014)
[47] J. Li, F. Meng, S. Suri, W. Ding, F. Huang, M. Wu, Chem comm, 48, 8213-8215(2012)
[48] J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. H. Qiao, Chem. Soc. Rev., 43, 7787-7812(2014)
[49] J. Y. Lee, J. S. Swinnea, H. Steinflink, W. M. Reiff, S. Pei, J. D. Jorgensen, Journal of Solid State, 103, 1-15(1993)
[50] 粘志泓,未摻雜或鈣摻雜之鈦酸鍶的晶體對稱性與相變化研究,國立中山大學,博士論文,民國102年