| 研究生: |
高立翰 Li-Han Kau |
|---|---|
| 論文名稱: |
探討電漿輔助化學氣相沉積對氫化奈米晶矽(nc-Si:H)薄膜之即時電漿放射光譜診斷大數據分析 large-scale data analysis of in-situ Plasma optical emission spectroscopy for PECVD hydrogenated nano-crystalline silicon (nc-Si:H) films |
| 指導教授: |
傅尹坤
Yiin-Kuen Fuh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積 、奈米晶矽薄膜 、主成分分析 、光放射光譜儀 、四極柱質譜儀 |
| 外文關鍵詞: | PECVD, nc-Si:H, PCA, Optical emission spectroscopy, Quadrupole mass spectrometry |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討即時電漿放射光譜(in-situ OES)的電漿診斷對於電漿輔助化學氣相沉積(PECVD)氫化奈米晶矽(nc-Si:H)薄膜的大數據分析。研究氫稀釋比(R = H_2 / 〖SiH〗_4)對沉積nc-Si:H薄膜結構和光學演變的影響,及對射頻匹配網路的原理進行了分析。對阻抗匹配網路各個零組件的功能進行了研究,結果表明,匹配網絡可以利用可變的電漿參數保持較高的射頻耦合效率,並降低反射功率。
從而建立更多監控的機台知識,包含OES及其相關的監測方法和非線性機台數據。在本文中,提出了一種基於OES監測結晶率(Crystallization rate)的健康值(Health Value)極限,用於在線方式進行機台結晶率評估檢測和診斷。已經分析和有較判斷氫化奈米晶矽(nc-Si:H)薄膜的結晶率。在這項工作中,研究偏差的方法以及包括更多降維方法與主成分分析(PCA)的結合,後一種算法被命名為結晶率健康值(Health Value)監測,並在案例研究中得到驗證。包括拉曼光譜(Raman)、傅里葉轉換紅外光譜(FTIR)、X-射線衍射光譜(XRD)。測量結果表明,通過調整氫稀釋比(R),可以誘導nc-Si:H結構演變,主要是從非晶態轉變為奈米晶態。此外使用即時電漿放射光譜(OES)電漿診斷工具來分析當氫稀釋比(R)升高而沉積速率降低時增加的結晶速率指數(H_α^* / 〖SiH〗^*)。
四極柱質譜儀(QMS)的另一電漿診斷工具(閾值電離質譜法(TIMS))也證實,〖SiH〗_x / 〖SiH〗_4密度隨著氫輸入的變化趨勢顯示〖SiH〗^*達到閥值後為主導的自由基,同時透過分析可以看出a-Si:H到nc-Si:H薄膜在消耗較高的矽甲烷自由基(〖SiH〗_x,x < 4),顯示在nc-Si:H沉積過程的轉變參數區域(R=30)密度趨勢有一個轉折點,自由基是SiH^+而非SiH_3。相對密度及氫稀釋比在(R=30-40)可以產生”最佳”氫化奈米晶矽(nc-Si:H)薄膜。
large-scale data analysis of Plasma Enhanced Chemical Vapor Deposition (PECVD) hydrogenated nanocrystalline germanium (nc-Si:H) thin films was investigated by plasma spectroscopy (OES) plasma diagnostics. The effect of hydrogen dilution ratio(R = H_2 / 〖SiH〗_4)on the structure and optical evolution of deposited nc-Si:H films was investigated, and the principle of RF matching network was analyzed. The function of each component of the impedance matching network is studied. The results show that the matching network can maintain high RF coupling efficiency and reduce the reflected power by using variable plasma parameters.
This will create more machine knowledge that is being monitored, including OES complex and non-linear machine data. In this paper, an OES-based Crystallization Rate (Health Value) limit is proposed for on-line crystallization rate assessment testing and diagnostics. The crystallinity of the hydrogenated nanocrystalline germanium (nc-Si:H) film has been analyzed and compared. In this work, the method of bias and the combination of more dimensionality reduction methods and principal component analysis (PCA) were studied. The latter algorithm was named as Health Value and was verified in case studies. Including Raman spectroscopy (Raman), Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction spectroscopy (XRD). The measurement results show that the structural evolution of nc-Si:H can be induced by adjusting the hydrogen dilution ratio (R), mainly from the amorphous state to the nanocrystalline state. In addition, a plasma diagnostic tool using immediate plasma emission spectroscopy (OES) was used to analyze the increased crystallization rate index(H_α^* / 〖SiH〗^*) when the hydrogen dilution ratio (R) was increased and the deposition rate was decreased.
Another plasma diagnostic tool for quadrupole mass spectrometry (QMS) (Threshold Ionization Mass Spectrometry (TIMS)) also confirmed that 〖SiH〗_x / 〖SiH〗_4density shows a change in hydrogen input with the trend of 〖SiH〗^* As a leading turning point, TIMS analysis of nc-Si:H film consumes higher methane methane radicals (〖SiH〗_x,x < 4), showing a turning point in the density trend in the nc-Si:H deposition process area, The free radical is SiH^* instead ofSiH_3. The relative density and hydrogen dilution ratio (R = 30-40) can produce an optima hydrogenated nanocrystalline (nc-Si:H).
1. H.P. Zhou, D.Y. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S.Y. Huang, Y.N. Guo, W.S. Yan, M. Xu, “Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma” J. Appl. Phys.110, 023517 (2011).
2. G.B. Tong, Z. Aspanut, M.R. Muhamad, S.A. Rahman, “Optical properties and crystallinity of hydrogenated nanocrystalline silicon (nc-Si: H) thin films deposited by rf-PECVD” Vacuum 86, 1195 (2012).
3. P. Dutta, S. Paul, D. Galipeau, V. Bommisetty, “Effect of hydrogen plasma treatment on the surface morphology, microstructure and electronic transport properties of nc-Si:H” Thin Solid Films 518, 6811 (2010).
4. L. Zhang, H.L. Shen, X.F. Jiang, B. Qian, Z.D. Han, H.H. Hou, “Influence of annealing temperature on the properties of polycrystalline silicon films formed by rapid thermal annealing of a-Si:H films” J. Mater. Sci. Mater. Electron. 24, 4209 (2013).
5. A.A.D.T. Adikaari, N.K. Mudugamuwa, S.R.P. Silva, “Nanocrystalline silicon solar cells from excimer laser crystallization of amorphous silicon” Sol. Energy Mater. Sol. Cells 92, 634 (2008).
6. J.H. Shim, S. Im, Y.J. Kim, N.H. Cho, “Nanostructural and optical features of hydrogenated nanocrystalline silicon films prepared by aluminium-induced crystallization” Thin Solid Films 503, 55 (2006).
7. T. Kaneko, M. Wakagi, K. Onisawa, T. Minemura, “Change in crystalline morphologies of polycrystalline silicon films prepared by radio‐frequency plasma‐enhanced chemical vapor deposition using SiF4+H2 gas mixture at 350 °C” Appl. Phys. Lett. 64, 1865 (1994).
8. Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G.Y. Hu, “The structure and properties of nanosize crystalline silicon films” J. Appl. Phys.75, 797 (1994)
9. A. Banerjee, F.S. Liu, D. Beglau, S. Tining, G. Pietka, J. Yang, S. Guha, “12.0% Efficiency on Large-Area, Encapsulated, Multijunction nc-Si:H-Based Solar Cells” IEEE J. Photovolt. 2, 104 (2012).
10. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar, “Influence of deposition pressure on structural, optical and electrical properties of nc-Si:H films deposited by HW-CVD” J. Phys. Chem. Solids 72, 685 (2011).
11. B.T. Goh, C.K. Wah, Z. Aspanut, S.A. Rahman, “Structural and optical properties of nc-Si:H thin films deposited by layer-by-layer technique” J. Mater. Sci. Mater. Electron. 25, 286 (2014).
12. H. He, C. Ye, X. Wang, F. Huang, Y. Liua, “Effect of driving frequency on growth and structure of silicon films deposited by radio-frequency and very-High-frequency magnetron sputtering” ECS J. Solid State Sci. Technol.3(5), Q74 (2014).
13. S.E. Lee, Y.C. Park, “Highly-conductive B-doped nc-Si:H thin films deposited at room temperature by using SLAN ECR-PECVD” J. Korean Phys. Soc. 65, 651 (2014).
14. S. Peng, D. Wang, F. Yang, Z. Wang, F. Ma, “Grown Low-Temperature Microcrystalline Silicon Thin Film by VHF PECVD for Thin Films Solar Cell” J. Nanomater. Article ID 327596 (2015).
15. M. Brodsky, M. Cardona, J.J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering” Phys. Rev. B16, 3556 (1977).
16. J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors” Mater. Res. Bull. 5, 721 (1970).
17. Y.L.Hsieh, C.C.Lee, C.C.Lu, Y.K.Fuh, J.Y.Chang, J.Y.Lee, T. T. Li, “Structural and electrical investigations of a-Si:H(i) and a-Si∶H(n+) stacked layers for improving the interface and passivation qualities” J. of Photonics for Energy, 7(3) (2017), 035503.
18. G.Dushaq, A.Nayfeh, M.Rasras “Tuning the optical properties of RF-PECVD grown μc-Si:H thin films using different hydrogen flow rate” Superlattice. Microst., 107, July (2017), 172-177
19. D. Mataras, S. Cavadias, D. Rapakoulias, “Spatial profiles of reactive intermediates in rf silane discharges” J. Appl. Phys. 66, 119 (1989).
20. G. Dingemans, M.N. van den Donker, A. Gordijn, W.M.M. Kessels, M.C.M. van de Sanden, “Probing the phase composition of silicon films in situ by etch product detection” Appl. Phys. Lett. 91, 161902 (2007).
21. U. Fantz, “Spectroscopic diagnostics and modelling of silane microwave plasmas” Plasma Phys. Control. Fusion 40, 1035 (1998).
22. V. Lisovskiy, J.-P. Booth, K. Landry, D. Douai, V. Cassagne, V. Yegorenkov, Appl. Phys. 40, 6631 (2007).
23. S. Nunomura, I. Yoshida, M. Kondo, “Time-dependent gas phase kinetics in a hydrogen diluted silane plasma” Appl. Phys. Lett. 94, 071502 (2009).
24. B. Strahm, A.A. Howling, L. Sansonnens, C. Hollenstein, “Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges” Plasma Sources Sci. Technol.16, 80 (2007).
25. A. Howling, B. Strahm, C. Hollenstein, “Non-intrusive plasma diagnostics for the deposition of large area thin film silicon” Thin Solid Films 517, 6218 (2009).
26. Uluyol, G. Parthasarathy, W. Foslien, K. Kim, Power curve analytic for wind turbine performance monitoring and prognostics, in: Annual Conference of the Prognostics and Health Management Society, 2011.
27. J. Lee, ”Machine performance monitoring and proactive maintenance in computer-integrated manufacturing: review and perspective, Int. J. Comput. Integr. Manuf. 8 (1995) 370-380.
28. J. Lee, Measurement of machine performance degradation using a neural network model, Comput. Ind. 30 (1996) 193-209.
29. Le Donne A, Binetti S, Isella G, Pichaud B, Texier M, Acciarri M and Pizzini S 2008 Appl. Surf. Sci. 254 2804–8
30. W. E. Spear, P. G. LeComber, Substitutional doping of amorphous silicon, Solid State Commun. 17(1975)1193-1196. 濱川圭弘 編著,太陽能光伏電池應用及其應用,張紅梅、崔曉華 譯,2004年。
31. 熊紹珍、朱美方 主編,太陽能電池基礎與應用,科學出版社,2010年。
32. 顧鴻濤 著,太陽能電池元件導論,全威圖書,2009年。
33. 黃惠良等人 編著,太陽能電池,初版,五南圖書,2009年。
34. Hans-Gunther Wadenmann, Heinz Eschrich, Photovoltaik,葉開恒譯,西安交通大學出版社,2011年。
35. M, Rosenberg, “Instabilities in dusty negative ion plasma”, Phys. Scr., vol. 79, pp. 1,2009.
36. M. Quirk and J.Serda, Semiconductor Manufacturing Technology, Ch.11Deposition, 2001.
37. 莊達人,VLSI 製造技術,高立圖書有限公司,1996。
38. J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
39. A. Matsuda, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol78(1), pp. 3-26, 2003.
40. A. Matsuda, “Thin-film silicon-growth process and solar cell application”, Japanese Journal of Applied Physics, Vol43(12R), pp.7909–7920, 2004.
41. Y. Ruoche, et al. Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge, 1997.
42. A. Matsuda, “Microcrystalline silicon. Growth and device application,” Journal of Non-Crystalline Solids, vol. 338, pp. 1-12, Jun 15 2004.
43. G. J. Wilfried, et al., “Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cell,”
44. O. Uluyol, G. Parthasarathy, W. Foslien, K. Kim, Power curve analytic for wind turbine performance monitoring and prognostics, in: Annual Conference of the Prognostics and Health Management Society, 2011.
45. 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學,物理研究所碩士論文,民國九十四年。
46. R.Martins, et al. “Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films”, Thin Solid Films, Vol.383, pp.165-168, 2001.
47. P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
48. A. Francis, et al. , “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796, 1997.
49. 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
50. T Moiseev, et al. , “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
51. S. Kim, et al., ” Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 117, pp. 174–177, 2013
52. N. Kosku, S. Miyazaki, “Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2 -diluted SiH4” , Thin Solid Films, 511-512 (2006) 265-270.
53. L. Latrasse, et al., “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., vol. 40, pp.5177 -5186,2007.
54. H.Kliung,et al., “X-ray Diffraction Procedures,”1974.
55. Z. Li, et al., “Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD,” Journal of Raman Spectroscopy, vol. 42, pp. 415-421, Mar 2011.
56. E. Bustarret, et al., “Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy,” Applied Physics Letters, vol. 52,pp. 1675-1677, 1988.
57. Y.L. He, et al., “The Structure and Properties of Nanosize Crystalline Silicon Films,” Journal of Applied Physics, vol. 75, pp. 797-803, Jan15 1994.
58. S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
59. Yusuke Fukuda, et al. , “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
60. A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas” Thin Solid Films 337, 1 (1999).
61. D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters” J. Soc. Ind. Appl. Math. 11, 431 (1963)
62. Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G.Y. Hu, “The structure and properties of nanosize crystalline silicon films” J. Appl. Phys. 75, 797 (1994).
63. C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells” Sol. Energy Mater. Sol. Cells 81 (2004) 61–71.
64. G.B. Tong, M.R. Muhamad, S.A. Rahman, “Effects of rf Power on structural properties of nc-Si:H thin films deposited by layer-by-Layer (lbl) deposition Technique” Sains Malays. 41, 993 (2012).
65. G. Lucovsky, “Vibrational spectroscopy of hydrogenated amorphous silicon alloys” Solar Cells 2, 431 (1980).
66. S. Halindintwali, D. Knoesen, R. Swanepoel, B. Julies, C. Arendse, T. Muller, C. Theron, A. Gordijn, P. Bronsveld, J.K. Rath, R.E.I. Schropp, “Improved stability of intrinsic nanocrystalline Si thin films deposited by hot-wire chemical vapour deposition technique” Thin Solid Films 515/2, 8040 (2007).
67. J.C. Knights, G. Lucovsky, R.J. Nemanich, “Defects in plasma-deposited a-Si:H” J. Non-Cryst. Solids 32, 393 (1979).
68. D. Tsu, G. Lucovsky, B. Dadison, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system” Phys. Rev. B 40, 1795 (1989).
69. A. Jones, W. Ahmed, I. Hassan, C. Rego, H. Sein, M. Amar, M. Jackson, J. “The impact of inert gases on the structure, properties and growth of nanocrystalline diamond” Phys.: Condens. Matter. 15, S2969 (2003).
70. C.Z. Chen, S.H. Qiu, C.Q. Liu, W.Y. Dan, P. Li, Y.C. Ying, X. Lin, “Low temperature fast growth of nanocrystalline silicon films by rf-PECVD from SiH4/H2 gases: microstructural characterization” J. Phys. D Appl. Phys. 41, 195413 (2008).
71. K.X. Lin, X.Y. Lin, Y.P. Yu, H. Wang, J.Y. Chen, “Measurements in silane radio frequency glow discharges using a tuned and heated Langmuir probe” J. Appl. Phys. 74, 4899 (1993).
72. M. Kondo, M. Okada, L. Guo, A. Matsuda, “High rate growth of microcrystalline silicon at low temperatures” J. Non-Cryst. Solids 84, 226 (2000).
73. C. Das, S. Ray, “Power density in RF PECVD: a factor for deposition of amorphous silicon thin films and successive solid phase crystallization” J. Phys. D Appl. Phys. 35, 2211 (2002).
74. M. Kondo, M. Okada, L. Guo, A. Matsuda, “High rate growth of microcrystalline silicon at low temperatures” J. Non-Cryst. Solids 84, 226 (2000).
75. S. Kirner, O. Gabriel, B. Stannowski, B. Rech, R.Schlatmann, “The growth of microcrystalline silicon oxide thin films studied by in situ plasma diagnostics” Appl. Phys. Lett. 102, 051906 (2013). B. Strahm, A. A. Howling, L. Sansonnens and C. Hollenstein J. Vac. Sci. Technol. A 25, 1198 (2007).
76. Le Donne A, Binetti S, Isella G, Pizzini S (2008) Electrochem Solid St 11:P5–P7
77. W. Kraus, U. Fantz, B. Heinemann, et al., Solid state generator for powerfulradio frequency ion sources in neutral beam injection systems, Fusion Eng.Des. 91 (2015) 16–20
78. D. Sudhir, M. Bandyopadhyay, W. Kraus, et al, Online tuning of impedancematching circuit for long pulse inductively coupled plasma sourceoperation–an alternate approach, Rev. Sci. Instrum. 85 (2014) 013510.