| 研究生: |
陳威任 Wei-Ren Chen |
|---|---|
| 論文名稱: |
使用FAM Z05沸石對水之小型吸附式空調性能研究 |
| 指導教授: |
楊建裕
Chien-Yuh Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 吸附式製冷 、FAM Z05沸石-水 |
| 外文關鍵詞: | adsorption cooling, FAM Z05 zeolite-water |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗製作FAM Z05沸石-水為吸附配對的吸附床,測試用於小型吸附式系統之性能,並比較與矽膠吸附床的差異。製作的沸石吸附床有兩種,第一種為使用PVA黏著劑塗佈沸石,第二種為使用PVP黏著劑塗佈沸石,塗佈的沸石的重量分別為1.17 kg及1.43 kg。實驗條件為固定冷卻水溫度在25度及冰水溫度20度,改變參數為熱水溫度60、70、80度,以及循環時間20、25、30、35、40分鐘。實驗結果得知,PVA黏著劑之沸石吸附床COP在熱水溫度70度較高,且循環時間越長COP越高,相較於矽膠吸附床所需的熱水溫度較低,SCP在熱水80度最高。PVP黏著劑之沸石吸附床因沸石的孔隙被PVP黏著劑堵住,造成無法吸附水汽,使系統沒有製冷。
In this system, a FAM Z05 zeolite-water adsorption bed is designed and system performance is measured, then compare to silica gel-water adsorption bed. Two adsorption bed are tested in experiment. One is using PVA glue to coating zeolite on heat exchanger, another one is using PVP glue to coating zeolite, and the weight of zeolite is 1.17 kg and 1.43 kg. In experimental condition, there are fixed cooling water temperature at 25 degree and chill water temperature at 20 degree, and tested three different hot water temperature are 60, 70 and 80 degree, and five cycle time are 20, 25, 30, 35 and 40 minute. The result shows that, the COP of adsorption bed which is coated by PVA glue in hot water at 70 degree is better, and COP is increase with cycle time increase, compare to silica gel adsorption bed the desorption temperature is much lower, SCP at hot water 80 degree is highest, the adsorption bed which is coated by PVP glue did not chill, because of the PVP glue blocked the zeolite’s porosity that the zeolite can not adsorb water vapor.
[1] 林素琴、林志勳,2017,「我國住宅部門電力使用研究」,台灣
能源期刊,第4卷第三期。
[2] 王智正、謝鎮州、張文師、唐震宸,2004,「熱能驅動之固體吸
附式製冷實驗研究」,中國機械工程學會第二十一屆全國學術研討會。
[3] 謝鎮州、張文師、王智正、唐震宸,2004,「運用工業廢熱之固
體吸附式製冷系統」,化工技術,第12 卷第四期。
[4] H.W.B. Teo, A. Chakraborty, F. Wu, 2017, “Improved adsorption
characteristics data for AQSOA types zeolites and water systems under static and dynamic conditions,” Microporous and Mesoporous Materials, Vol. 242, pp. 109-117.
[5] V.H. Chaudhari, A.D. Desai, 2017, “Development of Adsorption
Cooling Technology using Waste Heat Energy Sources: A Review,” Engineering Technology Science and Research, Vol. 4,pp. 2394-3386
[6] E.C. Boelman, B.B. Saha, T. Kashiwagi, 1995, “Experimental
investigation of a silica gel water adsorption refrigeration cycle The influence of operating conditions on cooling output and COP,” ASHRAE Transactions, Vol. 101, NO. 2, pp. 358-366.
[7] Y.L. Liu, R.Z. Wang, Z.Z. Xia, 2005, “Experimental performance of
a silica gel–water adsorption chiller,” Applied Thermal Engineering, Vol. 25, pp. 359–375.
[8] K. Kubota, T. Ueda, R. Fujisawa, J. Kobayashi, F. Watanabe, M.
Hasatani, N. Kobayashi, 2008, “Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module,” Applied Thermal Engineering, Vol. 28, pp. 87-93.
[9] 陳又維,2010,「薄矽膠層吸附床之性能研究」,國立中央大學
能源工程研究所碩士論文。
[10] 林宗漢,2011,「矽膠塗佈厚度對扁平管吸附床性能之影響」,
國立中央大學機械工程研究所碩士論文。
[11] W.S. Chang, C.C. Wang, C.C. Shieh, 2007, "Experimental study of a
solid adsorption cooling system using flat-tube heat exchangers as adsorption bed,” Applied Thermal Engineering, Vol. 27, pp. 2195-2199.
[12] 張鈞磊,2011,「小型吸附式空調系統研究」,國立中央大學
能源工程研究所碩士論文。
[13] G. Restuccia, A. Freni, F. Russo, S. Vasta, 2005, “Experimental
investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolite,” Applied Thermal Engineering, Vol. 25, pp. 1419−1428.
[14] C.Y.H. Chao, C.Y. Tso, K.C. Chan, C.L. Wu, 2015, “Experimental
performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences,” Heat and Mass Transfer, Vol. 85, pp. 343-355.
[15] Y. Liu, K.C. Leong, 2005, “The effect of operating conditions on the
performanceof zeolite/water adsorption cooling systems,” Applied Thermal Engineering, Vol. 25, pp. 1403-1418.
[16] Y.D. Kim, A. Myat, N.K. Choon, K. Thu, 2013, “Experimental
investigation on the optimal performance of Zeolite water adsorption chiller,” Applied Energy, Vol 102, pp. 582-590.