| 研究生: |
李宜寧 Yij-Ning Li |
|---|---|
| 論文名稱: |
選取多變量特性值最理想條件的方法之比較 |
| 指導教授: |
王丕承
P.C. Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文套用兩種方式來比較Khuri 和 Conlon(1981)、Plante(2001)和Romano,Varetto 和 Vicario(2004)的三個最佳化準則。此三項最佳化準則各自有不同著重的觀點,Khuri 和 Conlon(1981)的準則強調每一特性值和各自最佳特性值之間的差距越小越好;Plante(2001)的準則強調以最大化總製程能力指標的觀點來作為最佳化手法的概念;Romano,Varetto 和 Vicario(2004)的準則是利用最小化損失函數的方式,來當作最佳化手法的概念。而比較的第一個方式是將此三個準則應用於單一實際範例,我們將此三個最佳化準則的應用流程作詳細的說明和介紹;方式二為採用模擬的手法來比較此三個最佳化準則的好與壞。我們假設在實際製程中,最常見的條件限制情況為特性值之間有修復成本的考量及特性值彼此之間存在有相關性,而在這些情況下,希望能找到最適合此情況的最佳化準則。根據這兩個方式,觀察何種準則能夠使得所找到的每一特性值,會與該特性的最佳值最為接近,並藉由比較後呈現的結果,判斷此三種手法的好與壞。
參 考 文 獻
[1] Ames, A. E. , Mattucci, N. , MacDonald, S. , Szonyi, G. and Hawkins, D. M. (1997), “Quality Loss Functions for Optimization Across Multiple Response Surfaces,” Journal of Quality Technology, 29, 339~346.
[2] Box, G. E. P. and Wilson, K. B. (1951), “On the Experimental Attainment of Optimum Conditions,” Journal of the Royal Statistical Society, 13, 1~45.
[3] DelCastillo, E. , Montgomery, D. C. and McCarville, D. R. (1996), “Modified Desirability Functions for Multiple Response Optimization,” Journal of Quality Technology, 28, 337~345.
[4] Draper, N. R. and Smith, H. (1998), “Applied Regression Analysis,” John Wiley and Sons, New York.
[5] Harrington, E. C. (1965), “The Desirability Function,” Industrial Quality Control, 21, 494~498.
[6] Hill, W. J. and Hunter, W. G. (1966), “A Review of Response Surface Methodology:A Literature Review,” Technometrics, 8, 571~590.
[7] Khuri, A. I. and Conlon,M. (1981), “Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions,” Technometrics, 23, 363~375.
[8] Khuri, A. I. and Cornell, J. A. (1996), “Response Surfaces: Designs and Analyses,” Marcel Dekker, New York.
[9] Montgomery, D. C. (2001), “Design and Analysis of Experiments,” John Wiley and Sons, New York.
[10] Montgomery, D. C. (2001), “Introduction to Statistical Quality Control,” John Wiley and Sons, New York.
[11] Myers, R. H. , Khuri, A. I. and Vining, G. G. (1992), “Response surface Alternatives to the Taguchi Robust Parameter Design Approach,” The American Statistician, 46, 131~139.
[12] Plante, R. D. (2001), “Process Capability:A Criterion for Optimizing Multiple Response Product and Process Design,”
IIE Transactions, 33, 497~509.
[13] Romano, D. , Varetto, M. and Vicario G. (2004), “Multiresponse Robust Design:A General Framework Based on Combined Array,” Journal of Quality Technology, 36, 27~37.
[14] Ving, G. G. (1998), “A Compromise Approach to Multiresponse
Optimization,” Journal of Quality Technology, 22, 15~22.