| 研究生: |
韓嘉緯 Jia-wei Han |
|---|---|
| 論文名稱: |
以射頻磁控濺鍍方式鍍製含氫微晶矽薄膜並探討其應用於薄膜太陽能電池之可能性 Fabrication of Hydrogenated microcrystalline Silicon Thin Films Using RF Magnetron Sputtering |
| 指導教授: |
李正中
Cheng-chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 太陽能電池 、物理氣相沈積法 、微晶矽 |
| 外文關鍵詞: | microcrystalline Silicon, PVD, Solar cell |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於含氫之微晶矽薄膜比非晶矽薄膜的電性更佳,因而受到重視。製作含氫之微晶矽薄膜目前之主流製程為以電漿輔助之化學氣相沈積法(PECVD)。但PECVD的缺點在於設備成本高,且使用SiH4等有毒氣體。然而以射頻磁控濺鍍法來製作則可免除這些缺點,但很不幸地,一般以射頻磁控濺鍍法所製作出的都是非晶矽。因此本研究中,希望在較低之基板溫度條件下(Ts=250 ℃),能使用氫氣混入氬氣之方式鍍製出含氫之微晶矽薄膜。吾對於以不同氫氣流量、電源功率和基板溫度所製作出之薄膜進行晶粒大小、結晶比例和電性(暗導電率、光導電率、光導電率和暗導電率之比值photosensitivities)之量測分析。實驗結果顯示,晶粒大小、結晶比例和導電率會隨著氫氣流量的增加而增加,而photosensitivities卻相對減少;當氫氣流量達到適量時,晶粒大小可達20nm,結晶比例可達到80%以上。
Hydrogenated microcrystalline silicon (μc-Si:H ) thin films have attracted many attentions due to the high mobility compared with the amorphous silicon (a-Si) thin films. To fabricate μc-Si:H thin films plasma-enhance chemical vapor deposition (PECVD) is the most popular method. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH4). Whereas there is no these disadvantages using radio-frequency (RF) magnetron sputtering to deposit silicon thin films. Unfortunately, the silicon thin films deposited by the regular RF magnetron sputtering are a-Si. In this study, μc-Si:H thin films were fabricated using RF magnetron sputtering with argon and hydrogen as working gas at low substrate temperature (Ts=250℃). The grain sizes, crystal volume fractions and photosensitivities (ratios of dark conductivities and photo conductivities) of the μc-Si:H thin films which deposited with different hydrogen partial pressures and sputtering powers were analyzed. The results showed that the grain sizes and the crystal volume fractions were increased and the photosensitivities were decreased as the hydrogen gas flow increased. The grain sizes were between 15 to 20 nm and the crystal volume fractions were between 75 to 80% at high hydrogen gas flow .
1.莊嘉琛, "太陽能工程-太陽電池篇",台北, 全華科技圖書股份有限公司(1997).
2.S. Ray, C. Das, S. M., S. C. Saha, “Substrate temperature and hydrogen dilution: parameters for amorphous to microcrystalline phase transition in silicon thin films”, Solar Energy Materials & Solar Cells, 74, pp. 393-400(2002).
3.李正中, “薄膜光學與鍍膜技術”, 台北, 藝軒圖書出版社(第四版) (2004).
4.伍秀菁、汪若文、林美吟, “真空技術與應用”, 新竹市, 國科會精儀中心(初版)(2001).
5.A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata, and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD”, IEEE Trans. Electron Devices, 36, 351(1989).
6.N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, 40, 1876 (1994).
7.M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films”, IEEE Trans. Electron Devices, 43, 561(1996).
8.G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering”, IEEE Trans. Electron Devices, 43, 561 (1996).
9.O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, 3214 (1998).
10.K. Andrade and J. Jang, “Gold Induced Crystallization of Amorphous Silicon”, Journal of the Korean Physical Society, 39, 376 (2001).
11.Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, J. Appl. Phys. 84, 194 (1998).
12.S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett. 66, 1671 (1995).
13.S. Ray , S. Mukhopadhyay , T. Jana , R. Carius “Transition from amorphous to microcrystalline Si:H: effects of substrate temperature and hydrogen dilution” Journal of Non-Crystalline Solids, 299–302, 761–766(2002).
14.S. Klein , T. Repmann, T. Brammer, ” Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD”, Solar Energy, 77, 893–908 (2004).
15.H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani, “Effect of the hydrogen partial pressure ratio on the properties ofμc-Si:Hfilms prepared by RF magnetron sputtering”, Vacuum, 59, 785-791(2000).
16.O. Vetterl, F. Finger*, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuK ck, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon:A new material for photovoltaics”, Solar Energy Materials & Solar Cells, 62 , 97-108(2000)
17.J. Rudiger, H. Brechtel, A. Kottwitz, J. Kuske, U. Stephan, “VHF plasma processing for in-line deposition systems”, Thin Solid Films, 427 , 16(2003).
18.L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, “High rate deposition of microcrystalline silicon thin films with conventional RF PECVD”, Jpn. J. Appl. Phys., 37, L1116(1998).
19.G. H. Lee, J. H. Yoon,” Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films”, Mater. Res. Soc. Symp. Proc. 910( 2006).
20.A. Matsuda, “Formation Kinetics and Control of Microcrystalline in uc-Si:H From Glow Dischrage Plasma”, J. Non-Cryst. Solids, 59/60, 767 (1983).
21.C.C. Tsai, G.B. Anderson, R. Thompson, B. Wacker, “Control of Silicon Network Structure in Plasma Deposition”, J. Non-Cryst. Solids, 114, 151 (1989).
22.K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu, “Roles of Atomic Hydrogen in Chemical Annealing”, Jpn. J. Appl. Phys., 34, 442 (1995).
23.許樹恩、吳泰伯, X光繞射原理與材料結構分析, 國科會精儀中心, 台北市
24.H. Makihara, A. Tabata, Y. Mizutani, “Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepare by rf magnetron sputtering”, Vacuum, 59, 785-791(2000)
25.M. Ohring, Materials Science Of Thin Films, Academic Press(Second Edition), USA(2002).