| 研究生: |
曾文傑 Wen-chieh Tseng |
|---|---|
| 論文名稱: |
力法分析應用於HS-DLM混合搜尋法之桁架拓樸輕量化效率的研究 |
| 指導教授: | 莊德興 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 矩陣力法 、和聲搜尋法 、離散拉格朗日法 、結構輕量化設計 |
| 外文關鍵詞: | Force method, Harmony search, Discrete lagraingian method, Optimum structural design |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將力法分析應用於和聲搜尋(Harmony Search, HS)與離散拉格朗日法(Discrete Lagraingian Method, DLM)組成之混合演算法進行桁架拓樸結構輕量化設計,並比較力法與位移法之輕量化設計搜尋效率的快慢。
位移法分析時需求解方程式大小是由系統自由度的數量決定,具有高度通用性與自動化分析條件,被廣泛用於現今最佳化設計,而力法分析所需求解的方程式大小是系統贅餘度的數量決定,因此,當超靜定結構的贅餘度數量小於系統自由度數量時,力法在方程式求解的速度上佔有優勢,此外,力法分析中的力平衡矩陣,在結構拓樸與形狀相同下不會改變,因此不需重複將平衡矩陣拆解成對應贅力桿件的贅力矩陣和基元靜定結構的靜定矩陣。本文利用上述之力法分析上的優勢,結合HS隨機搜尋的能力在全域選定一個固定拓樸結構後,利用DLM健全的局部搜尋能力找出局部最佳解,在HS-DLM反覆的搜尋後,本文中所有算例皆可找出與文獻相同或是更好的解,證明了HS-DLM有不錯的搜尋能力,跟位移法分析結果比較後,也證明了力法分析較位移法有速度上的優勢。
This paper is study the efficiency between force method and displacement method applied to hybrid metaheuristic algorithm, namely HS-DLM,for topology optimization design of truesses wiht continuous and discrete variables.
Most structural optimization algorithms published in the literature were developed based on the displacement method of analysis which is incorporated inside the optimization routine. In the displacement method, the number of equations needed to be solved is the number of degrees of freedom for the system whereas that for the force method is the number of redundant forces.If the number of degrees of freedom is greater than the number of redundant in a structural system, the displacement method requires much more computer time than the force method does. Furthermore, the equilibrium matrix in the force method does not change when the topology and shape of truss is fixed in the redesign process making this method attractive and efficient.Using the HS(Harmony Search) global searching ability to find a fixed topology of truss, and find the constrained local minimum by applying DLM(Discrete Lagraingian Method). Afier a few iteration, the study shows that HS-DLM has great searching ability on the references’s cases and the force method has better efficiency of topology optimization design than displacement method.
[1] Arora, J. S.,(1989),“Introduction to Optimum Design,” McGraw-Hill.
[2] Balling,R.J., (1991),“Optimal Steel Frame Design by Simulated Annealing,”Journal of Structural Engineering, Vol. 117, No. 6, pp.1780-1795.
[3] Chai, S., and Sun, H. C., (1996),“A Relative Difference Quotient Algorithm for Discrete Optimization,”Structural Optimization, Vol.12, pp.46-56
[4] Deb, K., and Gulati, S., (2001),“Design of Truss-Structures for Minimum Weight Using Genetic Agorithms,” Finite Element in Analysis and Design, Vol. 37, pp. 447-465.
[5] Denke, P. H., (1959), “A General Digital Computer Analysis of Statically Indeterminate Structures,” western joint computer conference, pp. 72-78.
[6] Dong, Y. F., and Huang, H., (2004), “Truss Topology Optimization by Using Multi-Point Approximation and GA,”Chinese Journal of Computational Mechanics, Vol. 21, pp.746-751
[7] Dorn, W. S., Gomory, R. E., and Greenberg, H, J,. (1964),“Automatic Design of Optimal Structures,” Journal of Mechanic, Vol. 3, pp. 25-52.
[8] Erbatur, F., Hasancebi, O., Tutuncu, I., and Kikic, H., (2000),“Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp.209-224.
[9] Galante, M., (1996),“Genetic Algorithms as an Approach to Optimize Real-World Trusses,”International Journal for Numerical Methods in Engineering, Vol. 39, pp. 361-382.
[10] Geem,Z. W.,(2006), “Optimal Cost Design of Water Distribution Networks using Harmony Search,” Engineering Optimization, Vol. 38, pp. 259-280.
[11] Geem, Z. W., Kim, J. H., and Loganathan,G.V., (2001), “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76, pp.60-68.
[12] Geem, Z.W., Lee,K. S., and Y. Park., (2005), “Application of Harmony Search to Vehicle Routing,” American Journal of Applied Sciences, Vol. 2, pp. 1552-1557.
[13] Geman, S., and Geman, D., (1984),“Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 79, pp. 681-689.
[14] Hajela, P., (1990),“Genetic Search - an Approach to the Nonconvex Ptimization Problem,” AIAA Journal, Vol. 28, No. 7, pp.1205-1210.
[15] Hemp, W. S., (1974), “Michell Framework for Uniform Load between Fixed Supports,” Engineering Optimization, Vol. 1, Issue.1, pp.61-69.
[16] Hemp, W. S.,(1976),“Michell Framework for a Force in any Definite Direction at the Mid-point between Two Supports,”Engineering Optimization, Vol. 2, pp.183-187.
[17] Jenkins, W. M., (1997), “On the Application of Natural Algorithms to Structural Design Optimization,” Engineering Structures, Vol. 19, No. 4, pp. 302-308.
[18] Juang, D. S., (2004),“Integrated Configuration and Siscrete Sizing Optimization of Truss Structures Using Discrete Lagrangian Method,”10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 2004-4535.
[19] Juang, D. S., Wu, Y. T., and Chang, W. T., (2003), “Optimum Design of Truss Structures Using Discrete Lagrangian Method,”Journal of the Chinese Institute of Engineers, Vol. 26, pp. 635-646.
[20] Kaneko, L., Lawo, M., and Thierauf, G., (1982), “On Computational Procedures for the Force Method,”International Journal of Numerical Method in Engineering, Vol. 18, pp.1469-1495.
[21] Kaveh, A., (1992),“Recent Developments in the Force Method of Structural Analysis,”Applied Mechanics Review, Vol. 45, pp.401-418.
[22] Kaveh, A., and Kalatjari, V., (2002), “Genetic Algorithm for Discrete-Sizing Optimal Design of Trusses Using the Force Method,”International Journal for Numerical Methods in Engineering, Vol. 55, pp. 55-72.
[23] Kaveh, A., and Kalatjari, V., (2003),“Topology Optimization of Trusses Using Genetic Algorithm Force Method and Graph Theory,”International Journal for Numerical Methods in Engineering, Vol. 58, pp. 771–791.
[24] Kirsch, U.,(1989),“Optimal Topologies of Truss Structures,”Computer Methods in Applied Mechanics and Engineering, Vol. 72, pp. 15-28.
[25] Kirsch, U., Taye, S., (1986),“Optimal Topology of Grillage Structures,”Engineering with Computers, Vol. 1,pp. 229-243.
[26] Lee, K. S., Geem,Z. W. , Lee, S. H., and Bae,K.W.,(2005), “The Harmony Search Heuristic Algorithm for Discrete Structural Optimization,” Engineering Optimization, Vol. 37, No. 7, pp. 663-684.
[27] Luh, G. C., and Lin, C. Y., (2008),“Optimal Design of Truss Structures Using Ant Algorithm,”Structural and Multidisciplinary Optimization, Vol. 36, pp 365-379.
[28] Maxwell, J. C., (1864), “On theCalculation of the Equilibrium and Stiffness of Frames,” Philosophical Magazine, Vol. 27, pp. 294-299.
[29] May, S. A., and Balling, R. J., (1992), “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks,”Structural Optimization, Vol. 4, pp. 142-148.
[30] Michell, A. G., (1904),“The Limits of Economy of Material in Frame Structures,”Philosophical Magazine, Vol. 8, pp.589-597.
[31] Mohr, Otto., (1874),“Bietrag zur Theorie des Fachwerks,” Zietschrift des Architektenund Ingenieur, Vol. 20, pp. 338-342.
[32] Ohsaki, M., (1995),“Genetic Algorithm for Topology Optimization of Trusses,”Computers &Structures, Vol. 57, pp. 219-225.
[33] Ohsaki, M., (2001),“Random Search Method Based on Exact Reanalysis for Topology Optimization of Trusses with Discrete Cross-Sectional Areas,”Computers and Structures, Vol. 79, pp. 673-679.
[34] Prager, W.,(1977),“Optimal Layout of Cantilever Trussed,” Journal of Optimization Theory and Applications, Vol. 23, pp. 111-117.
[35] Prager, W.,(1978),“Optimal Layout of Trusses with Finite Numbers of Joints,” Journal of the Mechanics and Physics of Solids, Vol. 26, pp. 241-250.
[36] Prager, W., and Rozvany, G. I. N., (1977),“Optimal Layout of Grillages,”Journal of Structural Mechanics,Vol. 5, pp.1-18.
[37] Przemieniecki, J., (1968),“Theory ofMatrix Structural Analysis,” McGraw-Hill.
[38] Ringertz, U.,(1985),“On Topology Optimization of Trusses,” Engineering Optimization, Vol.9, pp. 209-218.
[39] Robinson, J., (1965),“Automatic Selection of Redundancies in the Matrix Force Method: the Rank Technique,”Canadian Aero Space Journal, Vol. 11, pp.9-12.
[40] Rozvany, G. I. N., (1979), “Optimal Beam Layouts: Allowance for Cost of Shear,”Computer Methods in Applied Mechanics and Engineering, Vol. 19, pp. 49-58.
[41] Rozvany, G. I. N., (1989), “Structural Design via Optimality Criteria,” Dordrecht: Kluwer Academic Publishers.
[42] Rozvany, G. I. N., and Hill, R. D., (1978),“Computer Algorithm for Deriving Analytically and Plotting Optimal Structural Layout,” Computers and Structures, Vol. 10, pp. 295-300.
[43] Rozvany, G. I. N., and Zhou, M., (1991),“Applications of the COC Algorithm in Layout Optimization,”Engineering Optimization in Design Processes, Vol. 63, pp. 59-70.
[44] Rozvany, G. I. N., and Zhou, M., (1991),“COC Algorithm, Part II. Topological, Geometrical and Generalized Shape Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 89, pp. 309-336.
[45] Schmit, L.A., andFleury,C., (1980),“DiscreteContinuousVariableStructural Synthesis Using Dual Methods,” AIAA Journal, Vol. 18,pp. 1515-1524.
[46] Shang, Y., and Wah, B. W., (1998), “A Discrete Lagraingian- Based Global Search Method for Solving Satisfiability Problems,” Journal of Global Optimization, Vol. 12, pp. 61-99.
[47] Sun, H. C., Chai, S., and Wang, Y. F., (1995),“Discrete Optimum Design of Structures,” Dalian University of Technology.
[48] Tauchert, T. D., (1974),“Energy Principles in Structural Mechanics,” McGraw-Hill.
[49] Timoshenko, S., (1953),“History of Strength of Material,” McGraw-Hill.
[50] Topping, B.H.V., (1983), “Shape Optimization of Skeletal Structures: aReview,” Journal of Structural Engineering, Vol.109, pp. 1933-51.
[51] Topping, B.H.V., Khan, A.I., and De Barros Leite, J. P., (1996),“Topology Design of Truss Structures Using Simulated Annealing,”Structural Engineering Review, Vol. 8, pp. 301-314
[52] Venkayya, V. B., Khot, N. S., and Reddyu, V. S.,(1969),“Optimization of Structures Based on the Study of Energy Distribution,”Of 2nd Conf. on Matrix Methods in Structure Mechanic, pp. 111-153.
[53] Wah, B. W., and Shang, Y., (1998),“A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems,” Journal of Global Optimization, Vol. 12, pp. 61-99.
[54] Wah, B. W., Shang, Y., and Wu, Z., (1999),“Discrete Lagrangian Method for Optimizing the Design of Multiplierless QMF Filter Banks,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE, Vol. 46, pp. 1179-1191.
[55] Wang, D., Zhang, W. H., and Jiang, J. S., (2002),“Truss Shape Optimization with Multiple Displacement Constraints,”Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 3597-3612.
[56] Wu, Z., and Wah, B. W., (1999),“The Theory of Discrete Lagrange Multipliers for Nonlinear Discrete Optimization”Principles and Practice of Constraint Programming, Vol. 1713,pp. 28-42.
[57] 石連栓、孫煥純、馮恩民 (2001),「具有動應力和動位移約束的離散變數結構拓撲優化設計方法」,應用數學和力學,第二十二卷,第七期,第695-700頁。
[58] 吳泳達(2003),「離散拉朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所。
[59] 孫煥純、柴山、王躍方、石連拴 (2002),「離散變數結構優化設計」,大連理工大學出版社。
[60] 徐開評 (2009),「應用和聲演算法探討溫室氣體排放限制下之電力系統容量擴增計畫」碩士論文,私立中原大學土工程研究所。
[61] 張慰慈(2003),「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所。
[62] 莊德興(2004),「桁架之形狀與離散斷面的整合輕量化設計」,第七屆結構工程研討會,桃園大溪。
[63] 莊德興、吳郎益(2003),「離散拉格郎日法於群樁基礎低價化設計之應用」,中國土木水利學刊,第十五卷,第二期,第93-104頁。
[64] 許素強 (1993) ,「結構尺寸、幾何、拓撲優化的新方法」博士論文,北京航空航太大學土木工程研究所。
[65] 黃海、夏人偉 (1994) ,「複雜結構優化設計的二級結構優化方法研究」,航空學報第十五卷,第七期,第780-786頁。
[66] 楊偉智(2009),「和聲搜尋法於巨大廢棄物回收網路設計之探討」,碩士論文,私立中原大學土木工程研究所。
[67] 藍志浩(2004),「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所。
[68] 羅冠君 (2008),「基於和聲搜尋法與離散拉格朗日法之混合演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程研究所。
[69] 鐘明劍 (2006),「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程研究所。