跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王柏文
BO-WEN WANG
論文名稱: 結合循環經濟材料與低碳技術的鋪面設計: 溫拌橡膠瀝青混凝土與平衡式配比設計之成效研究
The Pavement Design Integrating Circular Economy Materials and Low-Carbon Technologies: A Study on the Performance of Warm Mix Rubber Asphalt Concrete and Balanced Mix Design
指導教授: 林志棟
JHIH-DONG LIN
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系在職專班
Executive Master of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 147
中文關鍵詞: 循環經濟平衡式配比設計溫拌橡膠瀝青混凝土發泡瀝青
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在結合循環經濟材料與低碳技術,探討溫拌橡膠瀝青混凝土搭配平衡式配比設計的應用成效。研究中採用發泡瀝青技術製備溫拌橡膠瀝青,並進行多項試驗以評估其性能表現,包括抗開裂能力測試、抗車轍能力分析等及實地取樣異味測試。試驗結果顯示,本設計方案不僅能符合交通荷重需求,抗開裂指數亦遠高於國外之建議值。且溫拌技術成功降低橡膠瀝青帶來的異味問題,並證實在降低拌合溫度10至25°C的條件下仍保有良好的壓實性。本研究同時估算了使用廢輪胎橡膠粉的環境效益,顯示此作法能有效減少二氧化碳排放,達到節能減碳目標。
    本研究建議未來可進一步探索其他溫拌技術,如有機添加料及化學添加料於實務應用上的效益,並引進Superpave或平衡式配比設計法,以因應交通量與交通工具日新月異的變化。另建議修訂國內路面工程驗收標準,將抗開裂及抗車轍能力納入考量,並制定完善的溫拌瀝青施工規範,以促進該技術在實務中的推廣與應用。


    This study aims to integrate circular economy materials and low-carbon technologies to evaluate the application effectiveness of warm mix rubber asphalt concrete combined with balanced mix design. Foamed asphalt technology was adopted to produce warm mix rubber asphalt, and various tests were conducted to assess its performance, including cracking resistance tests, rutting resistance analysis, and on-site odor sampling tests. The results indicate that this design not only meets traffic load requirements but also achieves a cracking resistance index significantly higher than international recommendations. Additionally, the warm mix technology effectively reduces the odor issues associated with rubber asphalt and demonstrates excellent compaction performance under reduced mixing temperatures of 10 to 25°C. The study also estimated the environmental benefits of using recycled tire rubber powder, showing that this approach effectively reduces carbon dioxide emissions and achieves energy-saving and carbon reduction goals.
    This study recommends further exploration of other warm mix technologies, such as organic additives and chemical additives, to evaluate their practical benefits. It also suggests adopting Superpave or balanced mix design methods to address the evolving demands of increasing traffic volumes and modern transportation. Furthermore, it advocates revising the acceptance standards for domestic pavement engineering to include performance evaluations of cracking and rutting resistance. Establishing comprehensive construction specifications for warm mix asphalt is also recommended to promote the application and adoption of this technology in practical scenarios.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章、 緒論 1 1-1研究動機 1 1-2研究目的 2 1-3研究方法 3 1-3-1 配比設計調整 3 1-3-2製成溫度調整 3 1-3-3 試鋪階段結果分析 3 1-3-4 開工階段結果分析 3 1-4研究流程 4 第二章、 文獻回顧 6 2-1循環經濟及減碳技術 6 2-1-1循環經濟在台灣的發展 6 2-1-2低碳技術在台灣的進程 8 2-2橡膠瀝青混凝土 10 2-2-1經濟效益層面 10 2-2-2環保效益層面 12 2-2-3道路效益層面 15 2-3 溫拌瀝青混凝土 16 2-4平衡式配比設計 20 2-4-1發展背景 21 2-4-2基本概念 21 2-4-3設計方法 22 2-4-4案例分析 27 第三章、 溫拌橡膠瀝青混凝土品質管制 33 3-1國內案例現況分析 33 3-1-1橡膠瀝青案例 33 3-1-2溫拌瀝青案例 38 3-1-3溫拌橡膠瀝青案例 41 3-2台3乙線試鋪路段成果分析 42 3-2-1配合設計調整 42 3-2-2拌合溫度調整 46 3-2-3試鋪階段 47 3-2-4成果分析 51 第四章、 檢測成果成效分析 54 4-1檢測項目及內容 54 4-2現地檢驗成果分析 55 4-2-1抗水侵害能力試驗 55 4-2-2道路平坦度試驗 56 4-2-3壓實度試驗 58 4-2-4空氣檢測 59 4-3成效試驗成果分析 61 4-3-1理想車轍試驗 61 4-3-2間接張力開裂試驗 64 4-3-3漢堡輪跡試驗 69 第五章、平衡式配比設計之應用成效 72 5-1設計粒料配比 72 5-1-1選定設計方法 72 5-1-2粒料級配架構設計 75 5-2成效試驗執行 79 5-2-1執行理想車轍試驗 79 5-2-2執行間接張力開裂試驗 79 5-3節能減碳效益分析 81 5-3-1溫拌技術應用 81 5-3-2橡膠瀝青應用 81 第六章、結論與建議 83 6-1結論 83 6-2建議 85 參考文獻 87 附錄 90 附錄一、試驗報告 90 附錄二、橡膠瀝青配合設計試驗報告 111

    [1] 聯合國,Sustainable Development Goals,2015,。
    [2] 台北市,2023臺北市自願檢視報告,台北,2023。
    [3] Geoge B. Way, Kamil E. Kaloush, Krishna Prapoorna Biligiri, “Asphalt-Rubber Standard Practice Guide”, 2011.
    [4] Zareh, Ali and George B. Way, “Asphalt-Rubber 40 Years of Use in Arizona”, Asphalt rubber 2009 Proceedings, pp. 25-46, Jorge B. Sousa and Rongji Cao, 2009.
    [5] 網路資料:CalRecycle, 2024, From https://calrecycle.ca.gov/
    [6] 黃茂原,「溫拌橡膠瀝青混凝土鋪築成效研究-以台北市新工處一般道路更新工程為例」,國立中央大學,碩士論文,民國112年。
    [7] Sousa, Jorge, George B. Way and Douglas Carlson, “Environmental, Energy Consumption and CO2 Aspects of Recycled Waste Tires Used in Asphalt-Rubber”, Asphalt rubber 2009 Proceedings, pp. 755-766, Jorge B. Sousa and Rongji Cao, 2009.
    [8] White, Philip White, Jay S. Golden, Krishna P. Biligiri, and Kamil Kaloush, “Modeling Climate Change Impacts of Pavement Production and Construction”, 2009.
    [9] Kaloush, Kamil, K. Biligiri, M Rodezno, M. Belshe, G. Way,D. Carlson and Jorge Sousa, “Asphalt rubber asphalt concrete friction course overlay as a pavement preservationstrategy”, pp. 559-569. Procedings of the 4th Intemational Gulf Conference on Roads, 2008.
    [10] Trey Wurst, “Fuel and Greenhouse Gas Emissions Reductions by Decreasing Asphalt Mixture Production Temperatures with Chemical Warm Mix Asphal”, 2023.
    [11] 姚大鈞,「公共工程全生命週期的風險管理」,土木水利,第四十八卷,第三期,2021。
    [12] Federal Aviation Administration, “Hot Mix Asphalt Paving Handbook”, 2013.
    [13] 網路資料: National Asphalt Pavement Association, BALANCEDMIX DESIGN APPROACHES, 2021. From https://www.asphaltpavement.org/expertise/engineering/resources/bmd-resource-guide/balanced-mix-design-approaches
    [14] Randy West, Carolina Rodezno, Fabricio Leiva, Fan Yin, “Development of a Framework for Balanced Mix Design”, FINAL REPORT to the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM, 2018.
    [15] Vikas Kumar, Erdem Coleri, Ihsan Obaid, Anda Ligia Belc and Alex James Sutherland, “Selection of Durable, Environmentally Friendly, and Cost-Effective Asphalt Mixtures”, Materials, 2022.
    [16] 邱垂德、徐力平、徐敏晃、鍾偉舜、張俊鴻、林育輝、凃哲維、楊峻、黃麗松、周心韻、岑函蓉及彭思嘉,「廢輪胎橡膠瀝青鋪面應用拓展暨監測計畫」,行政院環境保護署委託辦理監測計畫,財團法人臺灣營建研究院,民國105年。
    [17] 陳俊堯、郭金讓、吳世傑、陳世晃、黃麗玲、黃茂原、郭俊宏、郭孟鑫及張育誌,「溫拌瀝青混凝土省道公路試鋪效益評估」,第16屆鋪面材料再生及再利用學術研討會暨第6屆永續與創新基礎建設研討會,2024。
    [18] AASHTO R 35-22, “Standard Practice for Superpave Volumetric Design for Asphalt Mixtures”, American Association of State Highway and Transportation Officials, 2022.
    [19] AASHTO T 283-22, “Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage”, American Association of State Highway and Transportation Officials, 2022
    [20] CNS 15046,「慣性剖面儀量測舖面縱向剖面試驗法」,經濟部標準檢驗局,2006。
    [21] AASHTO T 166-22, “Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens”, American Association of State Highway and Transportation Officials, 2022.
    [22] NIEA A201.14A,「異味污染物官能測定法—三點比較式嗅袋法」,國家環境研究院,民國101年。
    [23] ASTM D8360-22, “Standard Test Method for Determination of Rutting Tolerance Index of Asphalt Mixture Using the Ideal Rutting Test”, ASTM International, 2022.
    [24] ASTM D8225-19, “Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature”, ASTM International, 2019.
    [25] AASHTO T324-22, “Standard Method of Test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA)”, American Association of State Highway and Transportation Officials, 2022.
    [26] 網路資料: Fujie Zhou, 2020, The Ideal Rutting Test. From https://www.youtube.com/watch?v=u6l0ka6uf34
    [27] AASHTO, “Guide for Design of Pavement Structures”, American Association of State Highway and Transportation Officials, 1993.
    [28] David Jones, Rongzong Wu, Cathrina Barros, and Joseph Peterson, “Research findings on the use of Rubberized Warm-Mix Asphalt in California”, 2013.
    [29] STATE OF CALIFORNIA CALIFORNIA STATE RANSPORTATION AGENCY DEPARTMENT OF TRANSPORTATION, “STANDARD SPECIFICATIONS 2023 Edition”, DEPARTMENT OF TRANSPORTATION, 2023.
    [30] AASHTO T 312, “Standard Method of Test for Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor”, American Association of State Highway and Transportation Officials, 2022.
    [31] 邱垂德,「以廢輪胎橡膠推動道路養護資源循環減碳技術期中報告」,113年度補助資源循環創新及研究發展計畫,社團法人台灣輪胎循環經濟協進會,民國113年。

    QR CODE
    :::