跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李金龍
Chin-Lung Li
論文名稱: 雜訊消除放大器與寬頻矩陣型分佈式放大器暨壓控振盪器之研製
The Implementations of Noise Canceling Low Noise Amplifier, Wideband Matrix Distributed Amplifier and Voltage Controlled Oscillators
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 100
中文關鍵詞: 旁路電容高輸出功率雜訊消除低雜訊放大器前饋回授壓控振盪器四相位壓控振盪器限制功率消耗低相位雜訊變壓器射頻接地分佈式放大器
外文關鍵詞: power-constrained, noise canceling, feed-forward, voltage controlled oscillator(VCO), distributed amplifier, RF-grounding, quadrature VCO, transformer, low phase noise, high output power, low noise amplifier(LNA), bypass capacitor
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以TSMC 0.18-μm CMOS製程,研製接收機射頻前端電路與相關之被動元件。被動元件的部份主要是探討旁路電容佈局之連線效應,而設計之電路主要包括應用於X頻段之疊接架構功率限制低雜訊放大器、用於Wimax系統之雜訊消除結構低雜訊放大器、適用於超寬頻系統之射頻接地(RF-grounding)寬頻矩陣型分佈式放大器、使用在X頻段之差動壓控振盪器、兩個用於Wimax系統之四相位壓控振盪器,以及用於K頻段之變壓器回授型壓控振盪器。
    各電路之量測特性如下:低雜訊放大器:11 GHz疊接低雜訊放大器增益為14.5 dB,雜訊指數為2.8 dB,輸入反射損耗為-11.3 dB,輸出反射損耗為-23.19 dB,而輸入1 dB壓縮點為-13 dB,三階截斷點為+2 dB,總功率消耗21.24 mW;3.5 GHz的雜訊消除低雜訊放大器,增益為10 dB,雜訊指數為3.1 dB,輸入反射損耗為-24 dB,輸出反射損耗為-11 dB,而輸入1 dB壓縮點為-6.5 dB,三階截斷點為+4.5 dB,總功率消耗17.76 mW,若是調整到最佳之消除雜訊偏壓點,雜訊指數可降為2.5 dB;至於射頻接地寬頻矩陣型分佈式放大器,其最小增益為10.4 dB,大於10.4 dB之頻寬範圍為3.6 ~ 16.1 GHz,輸入反射損耗為-4.5 ~ -21 dB,輸出反射損耗在4.5 ~ 16.1 GHz的範圍內,小於-10 dB,最低雜訊指數為6.5 dB,其輸入1 dB壓縮點大於-11.5 dB,三階截斷點大於+1 dB,總功率消耗33.6 mW。壓控振盪器之量測特性:10.7 GHz的壓控振盪器,其頻率可調範圍為220 MHz,輸出功率為-6.44 ~ -4.54 dB,離主頻100 KHz之相位雜訊為-85.22 dBc/Hz,離主頻1 MHz之相位雜訊為-104.13 dBc/Hz,振盪器本身消耗功率為21.6 mW;3.5 GHz的四相位壓控振盪器I,頻率可調範圍為300 MHz,輸出功率為-7.11 ~ -8.71 dB,離主頻100 KHz之相位雜訊為-95 dBc/Hz,離主頻1 MHz之相位雜訊為-122.9 dBc/Hz,振盪器本身消耗功率為18 mW;3.5 GHz的四相位壓控振盪器II,頻率可調範圍為210 MHz,輸出功率為-1.25 ~ -4.02 dB,離主頻100 KHz之相位雜訊為-96.65 dBc/Hz,離主頻1 MHz之相位雜訊為-124.96 dBc/Hz,振盪器本身消耗功率為18 mW;23.7 GHz變壓器回授式壓控振盪器,頻率可調範圍為280 MHz,輸出功率為0.524 ~ 2.31 dB,離主頻1 MHz之相位雜訊為-118.7 dBc/Hz,振盪器本身消耗功率為12 mW。


    The thesis describes the passive and active circuits for receiver front end, which are both implemented in TSMC 0.18-μm CMOS technology. The study on passive circuits is about various types of parallel capacitors. The implemented circuits include a cascode power constrained low noise amplifier for X band, a noise canceling low noise amplifier for Wimax applications, an RF-grounding wideband matrix distributed amplifier fo UWB applications, a differential voltage controlled oscillator for X band, two quadrature voltage controlled oscillators for Wimax applications, and a transformer feedback voltage controlled oscillator for K band.
    In low noise amplifiers, the 11 GHz cascode power constrained low noise amplifier achieves 14.5 dB power gain, 2.8 dB noise figure, -11.3 dB input return loss, and -23.19 dB output return loss. The 1-dB gain compression point and the input third-order intercept point are -13 dBm and +2 dBm, respectively, and total power consumption is 21.4 mW; The 3.5 GHz noise canceling low noise amplifier achieves 10 dB power gain, 3.1 dB noise figure, -24 dB input return loss, and -11 dB output return loss. The 1-dB gain compression point and the input third-order intercept point are -6.5 dBm and +4.5 dBm, respectively, and total power consumption is 17.76 mW. By using optimum bias, the noise figure is 2.5 dB; The RF-grounding wideband matrix distributed amplifier achieves 10.4 dB power gain from 3.6 to 16.1 GHz. The input return loss is -4.5 ~ -21 dB, and the output return loss is lower than -10 dB from 4.5 to 16.1 GHz. The minimum noise figure is 6.5 dB. The 1-dB gain compression point is higher than -11.5 dBm, the input third-order intercept point is higher than +1 dBm, and total power consumption is 33.6 mW.
    In voltage controlled oscillators, the 10.7 GHz differential voltage controlled oscillator has a tuning range of 220 MHz, and the output power is -6.44 ~ -4.54 dBm. The phase noise at 100 KHz and 1 MHz achieve -85.55 dBc/Hz and -104.13 dBc/Hz, respectively, and the power consumption of the VCO core is 3.17 mW; The quadrature voltage controlled oscillator I has a tuning range of 300 MHz, and the output power is -7.11 ~ -8.71 dBm. The phase noise at 100 KHz and 1 MHz achieve -95 dBc/Hz and -122.9 dBc/Hz, respectively, and the power consumption of the VCO core is 18 mW; The quadrature voltage controlled oscillator II has a tuning range of 210 MHz, and the output power is -1.25 ~ -4.02 dBm. The phase noise at 100 KHz and 1 MHz achieves -96.65 dBc/Hz and -124.96 dBc/Hz, respectively, and the power consumption of the VCO core is 18 mW; The 23.7 GHz transformer feedback voltage controlled oscillator has a tuning range of 280 MHz, and the output power is 0.524 ~ 2.31 dBm. The phase noise at 1 MHz offset frequency achieves a -118.7 dBc/Hz, and the power consumption of the VCO core is 12 mW.

    中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅴ 目錄 Ⅵ 圖目錄 Ⅸ 表目錄 ⅩIII 第一章 緒論 1 1-1 研究動機 1 1-2 研究成果 1 1-3 章節簡述 1 第二章 旁路電容之研究 3 2-1 旁路電容之種類 3 2-2 量測結果與討論 5 第三章 低雜訊放大器 11 3-1低雜訊放大器導論 11 3-2低雜訊放大器之重要參數與MOSFET的雜訊 13 3-2.1 低雜訊放大器之重要參數 13 3-2.2 MOSFET的雜訊 15 3-3 限制功率消耗之11 GHz低雜訊放大器 17 3-3.1 在固定功率消耗時獲得最低雜訊之技巧 17 3-3.2 量測結果與討論 20 3-4 使用雜訊消除機制之3.5 GHz低雜訊放大器 24 3-4.1 利用前饋回授消除雜訊之機制 24 3-4.2 量測結果與討論 29 3-5 射頻接地之寬頻矩陣型分佈式放大器 33 3-5.1 射頻接地之寬頻矩陣型分佈式放大器 33 3-5.2 量測結果與討論 37 第四章 壓控震盪器 42 4-1 壓控振盪器導論 42 4-2 壓控振盪器之重要參數與相位雜訊 45 4-2.1 壓控振盪器之重要參數 45 4-2.2 相位雜訊 46 4-3 差動型壓控振盪器 51 4-3.1 應用於WLAN之10 GHz壓控振盪器 51 4-3.2 量測結果與討論 56 4-4 四相位壓控振盪器 61 4-4.1 四相位信號之產生 61 4-4.2 應用於Wimax系統之四相位壓控振盪器I 63 4-4.3 量測結果與討論 64 4-4.4 應用於Wimax系統之四相位壓控振盪器II 68 4-4.5 量測結果與討論 69 4-5 變壓器回授型之23.7 GHz 壓控振盪器 73 4-5.1 變壓回授式技巧 73 4-5.2 量測結果與討論 76 第五章 結論 80 5-1 結論 80 5-2 未來期許與研究方向 81 參考文獻 82

    REFERENCE
    [1] D. Zoschg, W. Wilhelm, T. F. Meister, H. Knapp, H.-D. Wohlmuth, K.
    Aufinger, M. Wurzer, J. Bock, H. Schafer, and A. Scholtz, “2 dB noise
    figure, 10.5 GHz LNA using SiGe bipolar technology,” Electron. Lett.,
    vol. 35, no. 25, pp. 2195-2196, Dec. 1999.
    [2] H. Knapp, D. Zoschg, T. Meister, K. Aufinger, S. Boguth, and L.
    Treitinger, “15 GHz wideband amplifier with 2.8 dB noise figure in SiGe
    biploar technology,” in Proc. IEEE RFIC Symp. Dig., pp. 287-290, May 2001.
    [3] T. K. K. Tsang and M. N. El-Gamal, “Gain controllable very low voltage
    (<1 V) 8-9 GHz integrated CMOS LNAs,” in IEEE RFIC Symp. Dig., pp. 205-
    208, June, 2002.
    [4] K.-L. Deng, M.-Da. Tsai, C.-S. Lin, K.-Y. Lin, H. Wang, S. H. Wang, W. Y.
    Lien and John G. J. Chern, “A Ku-band CMOS Low-Noise Amplifier,” in
    IEEE RFIT, pp. 183-186, Dec. 2005.
    [5] K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A Noise Optimization
    Formulation for CMOS Low-Noise Amplifiers With On-Chip Low-Q Inductors,”
    IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1554-1560, Apr.
    2006.
    [6] S. Mou, J.-G. Ma, K. S. Yeo, and M. A. Do, “A Modified Architecture Used
    for Input Matching in CMOS Low-Noise Amplifiers,” IEEE Trans. on Circuits
    and Systems-II: Express Briefs, vol. 52, no. 11, pp. 784-788, Nov. 2005.
    [7] K. Han, J. Gil, S.-S. Song, J. Han, H. Shin, C.-K. Kim, and K. Lee,
    “Complete High-Frequency Thermal Noise Modeling of Short-Channel MOSFETs
    and Design of 5.2-GHz Low Noise Amplifier,” IEEE J. of Solid-State
    Circuits, vol. 40, no. 3, pp. 726-735, Mar. 2005.
    [8] H.-W. Chiu, S.-S. Lu, and Y.-S. Lin, “A 2.17-dB NF 5-GHz-Band Monolithic
    CMOS LNA With 10-mW DC Power Consumption,” IEEE Trans. Microw. Theory
    Techn., vol. 53, no. 3, pp. 813-824, Mar. 2005.
    [9] L.-J. Lu, H.-H. Hsieh, and Y.-S. Wang, “A Compact 2.4/5.2-GHz CMOS Dual-
    Band Low-Noise Amplifier,” IEEE Microwave and Wireless Components
    Letters, vol. 15, no. 10, pp. 685-687, Oct. 2005.
    [10] S. Asgaran, M. J. Deen, and C.-H. Chen, “A 4-mW Monolithic CMOS
    LNA at 5.7 GHz With the Gate Resistance Used for Input Matching,” IEEE
    Microwave and Wireless Components Letters, vol. 16, no. 4, pp. 188-190,
    Apr. 2006.
    [11] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A Fully
    Integrated Differential CMOS LNA for 3─5-GHz Ultrawideband Wireless
    Receivers,” IEEE Microwave and Wireless Components Letters, vol. 16, no.
    3, pp. 134-136, Mar. 2006.
    [12] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Generating All Two-
    MOS-Transistor Amplifiers Leads to New Wide-Band LNAs,” IEEE J. of Solid-
    State Circuits, vol. 36, no. 7, pp. 1032-1040, July 2001.
    [13] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-Band CMOS Low-
    Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. of Solid-
    State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004.
    [14] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz broadband CMOS
    distributed amplifier,” in Proc. IEEE RFIC Symp., pp. 103-106, June 2003.
    [15] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6dB CMOS
    cascode distributed amplifier,” in Proc. IEEE VLSI Circuits Symp, pp.
    139-140, June 2003.
    [16] M.-D. Tsai, K.-L. Deng, and H. Wang, C.-H. Chen, C.-S. Chang, and J. G.
    J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage
    distributed amplifier,” IEEE Microwave and Wireless Components Letters,
    vol. 14, no. 12, pp. 554–556, Dec. 2004.
    [17] R. E. Amaya, N. G. Tarr, and C. Plett, “A 27 GHz fully integrated CMOS
    distributed amplifier using coplanar waveguide,” in Proc. IEEE RFIC
    Symp., pp. 193-196, June 2004.
    [18] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in
    0.18-μm CMOS technology,” in IEEE J. Solid-State Circuits, vol. 39, no.
    12, pp. 2389-2396, Dec. 2004.
    [19] T.-Y. Chen, J.-C. Chien, and L.-H. Lu, “A 45.6-GHz Matrix Distributed
    Amplifier in 0.18-μm CMOS,” in Proc. IEEE Custom Integrated Circuits
    Conference (CICC), pp. 119–122, Sep. 2005.
    [20] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “Design and Analysis of
    DC-to-14-GHz and 22-GHz CMOS Cascode Distributed Amplifiers,” in IEEE J.
    Solid-State Circuits, vol. 39, no. 8, pp. 1370-1374, Aug. 2004.
    [21] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
    Cambridge, U.K.: Cambridge Univ. Press, 1998.
    [22] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-Band Cross-
    Coupled Complementary Oscillator With Low Phase-Noise Performance,” IEEE
    Trans. Microw. Theory Techn., vol. 52, no. 4, pp. 1273–1278, Apr. 2004.
    [23] T. K. K. Tsang and M. N. El-Gamal, “A High Figure of Merit and Area-
    Efficient Low-Voltage (0.7-1V) 12GHz CMOS VCO,” in Proc. IEEE RFIC
    Symp., pp. 89-92, June 2003.
    [24] L. Perraud, J.-L. Bonnot, N. Sornin, and C. Pinatel, “Fully-Integrated
    10 GHz CMOS VCO for multi-band WLAN applicattions,” in IEEE European
    Solid-State Circuits, pp. 353-356, 2003.
    [25] N.-J. Oh and S.-G Lee, “11-GHz CMOS Differential VCO With Back-Gate
    Transformer Feedback,” IEEE Microwave and Wireless Components Letters,
    vol. 15, no. 11, pp.733–735, Nov. 2005.
    [26] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE
    Microwave and Wireless Components Letters, vol. 15, no. 10, pp.673–675,
    Oct. 2005.
    [27] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi,
    “A Low-Phase-Noise 5-GHz Quadrature VCO Using Superharmonic Coupling,”
    in IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.
    [28] H.-R. Kim, and C.-Y. Cha, and S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A
    Very Low-Power Quadrature VCO With Back-Gate Coupling,” in IEEE J. Solid-
    State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
    [29] J. Y. Chang, C.-H. W, and S.-I. Liu, “A Low-Phase-Noise Low-Phase-Error
    2.4GHz CMOS Quadrature VCO,” in Proc. IEEE Asian Solid-State Circuits
    Conference, pp. 281–284, Nov. 2005.
    [30] A. Fard and P. Andreani, “A Low-Phase-Noise Wide-Band CMOS Quadrature
    VCO for Multi-Standard RF Front-Ends,” in Proc. IEEE RFIC Symp., pp. 539- 542, June 2005.
    [31] S-M Moon, M-Q Lee, and B-S Kim, “Design of Quadrature CMOS VCO using
    Source Degeneration Resistor,” in Proc. IEEE RFIC Symp., pp. 535-538,
    June 2005.
    [32] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and Design
    of a 1.8-GHz CMOS LC Quadrature VCO,” IEEE J. Solid-State Circuits, vol.
    37, no. 12, pp. 1737-1747, Dec. 2002.
    [33] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in
    Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2,
    pp. 179-194, Feb. 1998.
    [34] R. Aparicio and A. Hajimiri, “A Noise-Shifting Differential Colpitts
    VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec.
    2002.
    [35] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differentail LC
    Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724,
    May 1999.
    [36] E. Hegazi, H. Sjoland, and A. A. Abidi, “A Filtering Technique to Lower
    LC Oscillator Phase Noise,” IEEE J. Solid-State Circuits, vol. 36, no.
    12, pp. 1921-1930, Dec. 2001.
    [37] P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’
    s,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [38] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise
    Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759,
    May 1997.
    [39] G. Gonzalez, 1996, Microwave Transistor Amplifiers Analysis and Design,
    2nd ed. Prentice-Hall, Inc.
    [40] B. Razivi, 1997, RF Microelectronics, Prentice Hall PTR.
    [41] C. R. C. De Ranter, M. S. J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,” I.
    Solid-State Circuits, session 23, pp. 370-371, Feb 2001.
    [42] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz Integrated CMOS
    Frequency Sources with a Quadrature VCO using Transformers,” in Proc.
    IEEE RFIC Symp., pp. 269-272, June 2004.
    [43] T.-P. Wang, R.-C. Liu, H.-Y. Chang, L.-H. Lu, and H. Wang, “A 22-GHz
    Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave
    and Wireless Components Letters, vol. 15, no. 12, pp. 859–861, Dec. 2005.
    [44] Alan W.L. Ng, Gerry C.T. Leung, Ka-Chun Kwok, Lincoln L.K. Leung, Howard
    C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18 μm CMOS,” I. Solid-State
    Circuits, session 8, pp. 158-160, Feb. 2005.
    [45] J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in
    Differential LC Oscillators,” IEEE Custom Integrated Circuits
    Conference, pp. 569-572, May 2000.
    [46] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung, and E. Yoon, “A 5GHz
    Transformer-Coupled CMOS VCO Using Bias-Level Shifting Technique,” in
    Proc. IEEE RFIC Symp., pp. 127-130, June 2004.
    [47] 林正杰,“應用於寬頻劃碼多工進階及雙頻無線區域網路之射頻收發機研製,”碩士論
    文, 2004, 國立中央大學。
    [48] 劉偉正, “應用於ISM與Ka頻段之射頻收發機前端電路研製,” 碩士論文, 2004, 國
    立中央大學。
    [49] 杜信龍, “無線收發機前端電路與相關被動電路之研製,” 碩士論文, 2005, 國立中
    央大學。

    QR CODE
    :::