| 研究生: |
劉振揚 Zhen-Yang Liu |
|---|---|
| 論文名稱: |
UASB結合BioNET處理氨氮廢水之研究 -以某光電廠有機廢水為例 Study on the treatment of ammonia-nitrogen wastewater by UASB combined with BioNET - Take organic wastewater from an optoelectronic factory as an example |
| 指導教授: |
林居慶
Chu-Ching Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | UASB 、BioNET 、TMAH 、MEA 、硝化作用 、TOC |
| 外文關鍵詞: | UASB, BioNET, TMAH, MEA, Nitrification, TOC |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來高科技產業不斷創新研發新產品,生產製程會調整變動,另外提升產品良率時,化學原物料用藥品牌、種類或藥劑量也會調整,造成製程排放廢水性質也不穩定。在放流水法規管制限值越加嚴格下,廢水處理系統,也必須進行功能提升,才能符合放流水法規。因此本研究針對某光電廠有機廢水中之氨氮及總有機碳為實驗基質,利用上流式厭氧污泥床(UASB)結合兩段式高效率生物網膜(BioNET-1&2)等高體積負荷之生物處理技術,進行去除氨氮與TOC之研究,並探討某光電廠有機廢水水質變化及處理效率。本研究利用原高濃度有機廢水、TMAH及DMSO混合,模擬出產線製程改變後的廢水水質,以水質調查分析結果作實驗設計基礎,經評估過後,將實廠系統改建完成,經由污泥馴養階段、長期處理功能驗證,並因生物處理效率受原水物質抑制而再進行加藥、生物擔體、出流水氨氮處理效率提升等研究,重新檢討實驗設計。並利用處理效率提升實驗結果,將BioNET-1反應槽另外新增碳酸氫鈉加藥系統,提供微生物無機碳源,促進細胞同化作用及硝化作用所需鹼度,並調整鼓風機管路配置,使生物擔體在反應槽中有良好的滾動狀態;最終處理效率分析與驗證時,BioNET-1氨氮去除率提升14%,出流水氨氮值皆低於20 mg/L,進而減少BioNET-2反應槽負擔;BioNET-2氨氮去除率更由27%大幅度提升至72%,出流水氨氮值皆低於20 mg/L,符合放流水法規值(30 mg/L)。UASB結合兩段式BioNET-1&2技術,在最終驗證階段處理效果佳,能有效處理有機廢水,但仍需注意因製程變動影響處理效率,尤其某光電廠為老舊工廠,土地面積及空間有限情況下,並無足夠體積之調勻槽讓廢水調勻緩衝,導致高濃度廢液在稀釋調勻不完全下,造成原水水質波動性大。
In recent years, high-tech industries continue to innovate and develop new products, and the production process will be adjusted and changed. In addition, when the product yield is improved, the brand, type, or dosage of chemical raw materials will also be adjusted, resulting in unstable wastewater discharge properties of the process. As the regulatory restrictions of drainage regulations become more stringent, wastewater treatment systems must be improved to meet the requirements of drainage regulations. Therefore this study in an optoelectronic factory in organic wastewater treatment of ammonia nitrogen and total organic carbon in the matrix, the experiment using the up-flow anaerobic sludge bed (UASB) combined with two sections of high efficient biological omentum (BioNET-1&2) high volume load of biological treatment technology, for the study of the removal of ammonia nitrogen and TOC, and discusses some optoelectronic factory organic wastewater quality and processing efficiency. In this study, the mixed raw high concentration organic wastewater, TMAH, and DMSO were used to simulate the wastewater quality after the production line process was changed. The experiment was designed based on the results of water quality investigation and analysis. After the evaluation, the actual plant system was rebuilt. After the sludge domestication stage, long-term treatment function verification, and due to the raw water material inhibits biological treatment efficiency, the research on dosing, biological support, and effluent ammonia-nitrogen treatment efficiency improvement was carried out, the experimental design was reviewed. In this study, based on the results of the treatment efficiency improvement experiment, the Bionet-1 reaction tank was equipped with a sodium bicarbonate dication system to provide the alkalinity required by microbial inorganic carbon source to promote cell assimilation and nitrification to adjust the configuration of the fan pipeline and make the biological support have a good rolling state in the reaction tank. The removal rate of BiONET-2 ammonia nitrogen was significantly increased from 27% to 72%, and the ammonia nitrogen value of the effluent water was all lower than 20 mg/L, which was in line with the legal value of Effluent Standards (30 mg/L). UASB combined with the two-stage Bionet-1&2 technology has a good treatment effect in the final verification stage and can effectively treat organic wastewater. However, it should be noted that the processing process changes will affect the treatment efficiency, especially in the case of an old optical power plant with limited land area and space, and there is no homogenizing tank of sufficient volume for the homogenizing and buffering of wastewater, resulting in a significant fluctuation of raw water quality.
1.C. Anthony, The Biochemistry of Methylotrophs, Academic press, Lodon; New York, 1982.
2.Chang, K.F., Yang, S.Y., You, H.S., Pan, J.R., “Anaerobic treatment of Tetra-methyl ammonium hydroxide (TMAH) containing wastewater”, Leee Transactions on Semiconductor Manufacturing, Vol 21, Issue 3, pp. 486-491, 2008。
3.Hu Tai Ho, Whang Liang Ming, Liu Pao Wen Grace, Hung Yu Ching, Chen Hung Wei, Lin Li Bin, Chen Chia Fu, Chen Sheng Kun, Hsu Shu Fu, Shen Wason, Fu Ryan, Hsu Romel, “Biological treatment of TMAH(tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant ”, Bioresource Technology, Vol 113, pp. 303-310, 2012.
4.Huysman, P., Meenen, P.V., Assche, P.V. and Verstraete, W., “Factors Affecting the Colonization of Non Porous and Porous Packing Materials in Model Upflow Methane Reactors ”, Biotechnology Letters, Vol 5, pp. 9-643, 1983.
5.Isaka K., Suwa Y., Kimura Y., Yamagishi T., Sumino T., and Tsuneda S. “Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol ”, Appl Microbiol Biotechnol, Vol 81, pp. 379-385, 2008.
6.Kato, M.T., Field, J.A., Lettinga, G. “The Anaerobic Treatment of Low Strength Wastewater in UASB and EGSB Reactor ”, Water Science & Technology, Vol 36, pp. 375-382, 1997.
7.Komorowska-Kaufman,M., Majcherek,H. and Klaczynski,E. “Factors affecting the biological nitrogen removal from wastewater ”, Process Biochemistry, Vol 41, pp. 1015-1021, 2006.
8.Lai, B., Shieh, W.K., “Batch monoethylamine degradation via nitrate respiration ”, Water Research, Vol. 30(10), pp. 2530-2534, 1996.
9.Lettinga, G., Hulshoff Pol, “Advanced Reactor Design ”, Operation and Economy, Water Science and Technology, 18(12), pp. 99-108, 1986.
10.MaCarty, P. L. “Anaerobic waste treatment fundamentals, Part Two. Environment requirements and control”. Public Works, 1964.
11.Malina, J.F., Pohland, F.G., “Design of Anaerobic Processes for Treatment of Industrial and Muncipal Waste ”, Technomic Publishing. Co., 1992.
12.Metcalf, Eddy. Wastewater Engineering Treatment and Reuse. 4th ed. New York, 2003.
13.Metz B., Kersten G.F., Hoogerhout P., Brugghe H.F., Timmermans H.A., De Jong A., Meiring H., ten Hove J., Hennink W.E., and Crommelin D. J., “Identification of formaldehyde-induced modifications in proteins: reactions with model peptides ”, Journal of Biological Chemistry, Vol 279, pp. 6235-6243, 2004.
14.Narrod, S. A., Jakoby, W. B., “Metabolism of ethanolamine an ethanolamine
oxidase ”, Journal of Biological Chemistry, Vol. 239, pp. 2189-2193, 1964.
15.Ndegwa, A. W., Wong, C. K. R., Chu, A., Bently, L. R., and Lunn R. D. S.,
“Degradation of monoethanolamine in soil ”, Environmental Engineering Science,Vol. 3, pp. 137-145, 2004.
16.Ohara, M., Katayama, Y., Tsuzaki, M., Nakamoto, S., Kurishi, H. Pacracoccus, kocurii sp. Nov., “a tetramethylammonium-assimilating bacterium ”, International journal of systematic bacteriology, Vol 40, pp. 292-296, 1990.
17.Park, S. J., Yoon, T. I., Bae, J. H., Seo, H. J., Park, H. J., “Biological treatment ofwastewater containing dimethyl sulphoxide from the semi-conductor industry ”, Process Biochemistry, Vol 36, pp. 579–589, 2001.
18.Seghezzo, L., Zeeman, G., van Lier, J. B., Hamelers, H. V. M., Lettinga, G., “A Review:The Anaerobic Treatment of Sewage in UASB and EGSB Reactors ”, Bioresource Technology, Vol 65, pp. 175-190, 1998.
19.Souza, M.E., “Criteria for the Utilization, Design and Operation of Uasb Reactors ”, Water Science and Technology, 18(12), pp.55-69, 1986.
20.Tanaka Kazuhiro, “Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen ”, Journal of Fermentation and Bioengineering, Vol 78, pp. 386-388, 1994.
21.李丁來,「淨水程序中溶解性有機物之去除:生物濾床及污泥澄清池之操作評估」,國立交通大學還境工程研究所研究報告,2007。
22.杜建德,「TFT-LCD環保運作概述」,2005。
23.林宏霖,「探討生物分解光電產業製程廢水之反應動力特性研究」,國立成功大學,環境工程學系碩士論文,2006。
24.林振鴻,「以PU網狀泡綿生物濾床處理民生污水之效能探討」,國立中山大學,環境工程研究所碩士論文,2014。
25.俞庭旭、李清屏和游惠宋,「積體電路製造業顯影製程廢水厭氧處理工程」,工業工程年會論文,2016。
26.張謝淵,「AOAO污水處理程序去除營養鹽之特性研究」,國立中央大學,環境工程研究所博士論文,2000。
27.張王冠,BioNET應用於水與廢水處理之新型生物處理技術,工業技術研究院,2021。https://www.itriwater.org.tw/Technology/More?id=58
28.張冠甫,上流式厭氧污泥床技術,工業技術研究,2021。https://www.itriwater.org.tw/Technology/More?id=57
29.陳廷光、倪振鴻和陳重男,「生物薄膜與逆滲透程序應用於TFT-LCD製程廢水處理與回收再利用」,工業污染防治期刊,第八十九期,第125-141頁,2004。
30.鄒文源、張王冠、洪仁陽、吳漢松和莊順興,「以BioNET生物程序進行自來水原水前處理之可行性評估」 ,自來水研究發表會,第十六屆
,1999。
31.黃志彬,「提升傳統淨水處理程序效能之研究鳳山場內模型場試驗研究-第二年」,國立交通大學環境工程究所研究報告,2004。
32.黃淑君,「不織布薄膜反應槽好氧生物生物分解TFT-LCD製程有機廢水程序功能及生態變化之研究」,國立成功大學,環境工程學系碩士論文,2006。
33.黃伯雄,「UASB 串聯活性污泥提升氨基甲酸鹽類農藥原體廢水處理成效之探討」國立中央大學,環境工程研究所碩士論文,2014。
34.譚仲萍,「添加固定化擔體對AO及AOAO程序脫氮除磷之研究」,國立雲林科技大學,環境與安全工程系碩士論文,2001。