| 研究生: |
曾逸群 Yih-Chyurn Tseng |
|---|---|
| 論文名稱: |
兩個具時空效應之隨機場的獨立性檢定 Testing Independence Between Two Spatial-Temporal Random Fields |
| 指導教授: |
黃世豪
Shih-Hao Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 維度縮減 、高斯隨機場 、獨立性檢定 、多分辨率薄板樣條基底函數 、時空資料 、遙相關 |
| 外文關鍵詞: | Dimension Reduction, Guassian Random Field, Independence Test, Multiresolution Thin-plate Spline Basis Function, Spatial-Temporal Data, Teleconnection |
| 相關次數: | 點閱:29 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人類在軟硬體上的進步,影像資料的解析度越來越高,細節越 來越豐富。在資料分析時卻也面臨變數維度大量增加隨之而來的檢定力 下降與計算複雜度大增的問題。目前主流的做法便是將資料維度降低後 再做下一步的分析。本文旨在保持資料固有的結構下對具有時空效應的 成對圖像資料進行獨立性檢定。在本文中我們提出兩階段獨立性檢定法, 分開處理高維度空間影像資料的維度縮減問題,以及處理成對低維度時 間序列之獨立性檢定。在階段一中我們將原始資料投影至主要的多分辨 率薄板樣條 (MRTS) 基底函數所展開的空間中,在保留原始資料的固有 相關結構的同時能夠有效地降低資料維度;而在階段二中我們將降維後 的資料以成對低維度時間序列之獨立性檢定加以分析與推論。我們藉由 模擬資料試驗分別在基於虛無假設成立時以及在對立假設成立時分別比 較各種獨立性檢定方法的表現,並將這些方法應用在海平面溫度與降雨 量之遙相關分析中。
With the advancements in hardware and software, the resolution of image data has been continuously increasing, leading to richer details. However, data analysis encounters challenges such as decreased statistical power and increased computational complexity due to the substantial increase in variable dimensions. The most popular approaches are to reduce the data dimensionality before conducting further analysis. This thesis aims to test independence between paired image data with spatiotemporal dependence while preserving the inherent spatial and temporal structures. A two-stage independence testing method is proposed, combining dimension reduction for high dimensional spatial image data and an independent test for paired low-dimensional time series. In the first stage, we project the original data onto a space spanned by the primary MultiResolution Thin-plate Splines (MRTS) basis functions. This projection effectively reduces the data dimensionality while preserving the inherent spatial correlation structure of the original data. In the second stage, we analyze and infer the independence of the dimension-reduced data using an independence test for paired low-dimensional time series. We compare the performance of these independence testing methods through simulation experiments under the null hypothesis and alternative hypothesis, respectively. Additionally, we apply these methods to the teleconnection analysis of sea surface temperature and rainfall datasets.
Bao, Z., J. Hu, G. Pan, and W. Zhou (2019). Canonical correlation coefficients of high- dimensional gaussian vectors. The Annals of Statistics 47, 612–640.
BBCChinese.com (2020). BBC 盤點人類歷史上最致命的自然災難. Retrieved 2023/06/21, from https://www.bbc.com/zhongwen/trad/world-53254819.
Bouhaddioui, C. and R. Roy (2006). A generalized portmanteau test for independence of two infinite-order vector autoregressive series. Journal of Time Series Analysis 27, 505–544.
Dai, A. and T. Wigley (2000). Global patterns of ENSO-induced precipitation. Geophys- ical Research Letters 27, 1283–1286.
Diaz, A. F., C. D. Studzinski, and C. R. Mechoso (1998). Relationships between precip- itation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans. Journal of Climate 11, 251–271.
Drosdowsky, W. and L. E. Chambers (2001). Near-global sea surface temperature anoma- lies as predictors of Australian seasonal rainfall. Journal of Climate 14, 1677–1687.
Edelmann, D., K. Fokianos, and M. Pitsillou (2019). An updated literature review of distance correlation and its applications to time series. International Statistical Re- view 87, 237–262.
Hewitt, J., J. A. Hoeting, J. M. Done, and E. Towler (2018). Remote effects spatial process models for modeling teleconnections. Environmetrics 29, e2523.
Himdi, K. E. and R. Roy (1997). Tests for noncorrelation of two multivariate arma time series. Canadian Journal of Statistics 25, 233–256.
Hong, Y. (1996). Testing for independence between two covariance stationary time series. Biometrika 83, 615–625.
Horvath, L. and G. Rice (2015). Testing for independence between functional time series. Journal of Econometrics 189, 371–382.
Huang, S.-H., H.-C. Huang, R. S. Tsay, and G. Pan (2021). Testing independence be- tween two spatial random fields. Journal of Agricultural, Biological and Environmental Statistics 26, 161–179.
Johnstone, I. M. (2008). Multivariate analysis and jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. Annals of Statistics 36, 2638.
Jolliffe, I. T. (2002). Principal Component Analysis. New York: Springer.
Ljung, G. M. and G. E. Box (1978). On a measure of lack of fit in time series models.
Biometrika 65, 297–303.
Messager, C., H. Gallée, and O. Brasseur (2004). Precipitation sensitivity to regional SST in a regional climate simulation during the West African monsoon for two dry years. Climate Dynamics 22, 249–266.
Montroy, D. L. (1997). Linear relation of central and eastern North American precipitation to tropical Pacific sea surface temperature anomalies. Journal of Climate 10, 541–558.
Mullan, A. (1998). Southern hemisphere sea-surface temperatures and their contemporary and lag association with New Zealand temperature and precipitation. International Journal of Climatology: A Journal of the Royal Meteorological Society 18, 817–840.
Omondi, P., J. L. Awange, L. Ogallo, J. Ininda, and E. Forootan (2013). The influence of low frequency sea surface temperature modes on delineated decadal rainfall zones in Eastern Africa region. Advances in Water Resources 54, 161–180.
Peña, D. and J. Rodríguez (2002). A powerful portmanteau test of lack of fit for time series. Journal of the American Statistical Association 97, 601–610.
Rajeevan, M. and L. Sridhar (2008). Inter-annual relationship between Atlantic sea surface temperature anomalies and Indian summer monsoon. Geophysical Research Letters 35, L21704.
Rana, S., J. Renwick, J. McGregor, and A. Singh (2018). Seasonal prediction of winter precipitation anomalies over Central Southwest Asia: A canonical correlation analysis approach. Journal of Climate 31, 727–741.
Robbins, M. W. and T. J. Fisher (2015). Cross-correlation matrices for tests of inde- pendence and causality between two multivariate time series. Journal of Business & Economic Statistics 33, 459–473.
Shen, X., H.-C. Huang, and J. Ye (2004). Inference after model selection. Journal of the American Statistical Association 99, 751–762.
Tsay, R. S., D. Wood, and J. Lachmann (2022). MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models. R package version 1.2.1.
Tzeng, S. and H.-C. Huang (2018). Resolution adaptive fixed rank kriging. Technomet- rics 60, 198–208.
von Storch, H. and F. W. Zwiers (2002). Statistical Analysis in Climate Research. Cam- bridge: Cambridge University Press.
Wang, W. and H. Huang (2018). Regularized spatial maximum covariance analysis. En- vironmetrics 29, e2481.
Witten, D. M., R. Tibshirani, and T. Hastie (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515–534.
Yang, Y. and G. Pan (2015). Independence test for high dimensional data based on regularized canonical correlation coefficients. The Annals of Statistics 43, 467–500.