跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李孟軒
Meng-Xuan Li
論文名稱: 使用擴展型卡爾曼濾波器處理非線性雷達量測訊號進行攔截飛彈導引
Guidance of Interceptor Missiles Using Extended Kalman Filter for Nonlinear Radar Measurements
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 80
中文關鍵詞: 卡爾曼濾波器攔截飛彈雷達導引
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的為改善攔截飛彈行駛路徑及攔截所需時間,以求在較短時間內成功攔截目標,降低被敵方干擾或攔截的可能性。本文運用擴展型卡爾曼濾波器對非線性之雷達量測訊號進行濾波並估計目標狀態,再利用擴展型卡爾曼濾波器估計值預測攔截所需時間以及可能攔截位置,並取代目前較為廣泛使用之比例導引法(Proportional Navigation Guidance)。本文在Matlab軟體程式建立二維模擬環境,於不同參數設定環境下將所提之飛彈導引方式與比例導引法進行模擬比較與分析,透過模擬結果觀察,本文所提之導引方式可有效改善飛彈行駛路徑及攔截目標所需時間。


    The purpose of this thesis is to utilize the extended Kalman filter(EKF) to replace the proportional navigation (PN) guidance method conventionally practiced in a guided missile in order to improve the tracking performance and to reduce the required time for intercepting target, so as to further increase the chance of victory when defending from the invasion of an enemy. The EKF is developed to filter nonlinear radar signals and to estimate target states. The estimation results in our proposed method are used to predict the required time for target interception and the interception point for missile guidance. A two-dimensional tracking trajectory environment is simulated with Matlab. Two missile guidance methods, the proposed method and the PN guidance, have been studies and compared with computer simulations for different parameters setup. Simulation results show that the proposed method can achieve performance improvement on both missile trajectory and the overall elapsed time over the PN guidance method.

    摘 要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 vi 符號彙編 vii 第一章 緒論 1 1.1研究動機與背景 1 1.2文獻探討 1 1.3論文綱要 3 第二章 系統場景 5 2.1 概述 5 2.2 飛彈攔截目標幾何模型 5 2.3 飛彈導引系統 6 2.4雷達量測模型方程式 7 2.5導引法則 9 2.6卡爾曼濾波器 11 2.7標準型卡爾曼濾波器演算法流程 11 2.8 擴展型卡爾曼濾波器演算法流程 14 第三章 本文所提之目標追蹤演算法 16 3.1 概述 16 3.2虛擬點設置 16 3.3不設置虛擬點 19 3.4雷達天線盤角度限制 21 3.5本文所提之導引方式整理 22 第四章 模擬比較與分析 24 4.1 場景參數設定 24 4.2 擴展型卡爾曼濾波器系統模型建立 25 4.3假設目標速度為200m/s之模擬結果 27 4.4假設目標速度為800m/s之模擬結果 45 第五章 結論與未來展望 63 5.1結論 63 5.2未來展望 64 文獻參考 65

    [1] Wikipedia, “List of missile,” http://en.wikipedia.org/wiki/List_of_missile.
    [2] 杜順旭,「預測比例導向飛行物之研究與探討」,私立逢甲大學,碩士論文,民國73年。
    [3] Rafael Yanushevsky, Modern Missile Guidance, CRC Press, 2008.
    [4] 馮仰靚,「具加速度時間延遲之飛彈的強健導引律設計」,國立交通大學,民國101年。
    [5] Shuwen Pan, Hongye Su, Jian Chu,Hong Wang, “Applying a novel extended Kalman filter to missile-target interception with APN guidance law:A benchmark case study,” Control Engineering Practice, vol. 18 ,issue 2, pp.159-167, 2010.
    [6] Phil Kim, Kalman Filter for Beginners with MATLAB Examples, A-JIN Publishing, 2010.
    [7] Z. Paul, M. Howard, Fundamentals of Kalman Filtering: A Practical Approach, American Institute of Aeronautics and Astronautics, Incorporated, 2000.
    [8] Dah.Chung Chang, “Maneuvering Target Tracking with Colored Noise,” IEEE Transactions on Aerospace and Electronic systems vol. 32, NO.4 October, 1996.
    [9] D. Simon, Optimal State Estimation, Kalman, H∞, and Nonlinear Approaches, John Wiley & Sons, 2006.
    [10] Madyastha,V. K., “Adaptive estimation for control of uncertain nonlinear systems with applications to target tracking,” Ph.D. Thesis, School of Aerospace Engineering, Georgia Institute of Technology, USA. 2005.
    [11] 詹榮吉,「重返大氣層之彈道飛彈追蹤與彈道係數估計」,國立交通大學,民國100年。
    [12] G.M. Siouris, Guanrong Chen, Jianrong Wang, “Tracking an incoming ballistic missile using an extended interval Kalman filter.” IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, Issue. 1, Jan. 1997.
    [13] George M. Siouris, Missile guidance and control systems, Springer, New York, NY, 2004.
    [14] Cottrell, R. G., “Optimal interceptor guidance for short-range tactical missile,” AIAA Journal, 9, 1414-1415, 1971.
    [15] Shneydor, N. A., Missile Guidance and Pursuit, Horwood Publishing, Chichester, 1998.
    [16] Zadeh, L. and Desoer, C., Linear System Theory, McGraw Hill, New York, 1963.
    [17] Hemsch, M., “Tactical missile aerodynamics,” Progress in Astronautics and Aeronautics, Vol. 141, American Institute of Astronautics and Aeronautics, Inc., Washington, DC, 1992.
    [18] 王定國,「應用於攔截機動目標之飛彈追蹤與非線性導引控制設計」,國立台灣大學,民國102年。
    [19] S.A. Murtaugh nd H. E. Criel, “Fundamentals of proportional navigation,” IEEE Spectrum, vol. 3, pp. 75-85, 1996.
    [20] Paul Zarchan, Tactical and Strategic Missile Guidance, American Institute of Aeronautics and Astronautics, Inc, vol. 99, 2002.
    [21] 林清安,「飛彈攔截系統之設計模擬及性能評估」,國立交通大學,民國97年。
    [22] Yuan, P. J. and Chern, J. S., “Solutions of True Proportional Navigation for Maneuvering and Nonmaneuvering Targets,” J. Guid. Control Dyn., vol. 15, pp. 268-271, 1992.
    [23] M. Guelman, “A qualitative study of proportional navigation,” IEEE Trans. Aerosp. Electron. Syst., vol.AES-7, no.4, pp. 637-643, 1971.
    [24] Becker, K., “Closed-form Solution of Pure Proportional Navigation,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no.3, pp. 526-532, 1990.
    [25] R. Karlsson, F. Gustafsson, “Range estimation using angle-only target tracking with particle filters,” Proceedings of the American Control Conference, pp. 3743-3748, 2001.
    [26] F. K. Yeh, “Design of nonlinear terminal guidance/autopilot controller for missiles with pulse type input devices”, Asian Journal of Control, Vol. 12, No. 3, pp. 399–412, 2010.

    QR CODE
    :::