| 研究生: |
林弘基 Hong-Ji Lin |
|---|---|
| 論文名稱: |
叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討 The parametric study in the cathode of PEMFC with the interdigitated flow field |
| 指導教授: |
吳俊諆
Jiunn-Chi Wu 曾重仁 Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 質子交換膜燃料電池 、叉合型流場 、淨水傳輸效應 、質子電場效應 |
| 外文關鍵詞: | net water transport effect, PEMFC, protonic field effect, interdigitated flow field |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以二維數值模擬分析質子交換膜燃料電池的陰極半電池搭配叉合型單相流場,計算區域包括擴散層、催化層和薄膜。數值解著重在探討淨水傳輸效應、質子電場效應和不同參數(入口壓力、薄膜含水量、擴散層和催化層的孔隙率以及Nafion材質中不同亞硫酸根離子濃度)對電流-電壓曲線的影響。
數值結果發現淨水傳輸效應對電池性能幾乎沒有影響,但是質子電場效應會強烈壓抑入口流入的氧氣,因而降低電池的電流密度。增加薄膜含水量會提高過電位,使電流密度上升。而入口壓力愈高,入口氧氣濃度亦隨之增加,對於歐姆極化的影響降低,且降低在催化層中逆流的效應。增加擴散層和催化層的孔隙率對於氧氣的擴散能力加強,在濃度極化時可有效提供氧氣參與反應。在催化層內由於質子由高電位往低電位移動會影響氣體流動方向,故本文探討在催化層不同亞硫酸根離子濃度(可視為Nafion材質的成分指標)對於質子電位的影響,有別於一般燃料電池的研究認為Nafion材質中亞硫酸根離子濃度愈高,質子傳導愈多,燃料電池性能愈好。但本文的數值解卻顯示降低亞硫酸根離子濃度,對造成在催化層內逆流的影響愈小,可有助提高電流密度。
A numerical study is performed to analyze the half-cell model for the proton exchange membrane fuel cell (PEMFC) with an interdigitated gas flow field. The modeling domain consists of the diffuser layer, catalyst layer and the membrane. Numerical simulation is focused on effects of the net water transport, protonic field and various parameters on the performance of current density-voltage (I-V) curve.
Simulations reveal that the net water transport virtually has no any effect on the I-V curve. However, the inflow oxygen amount is strongly blocked by the action of protonic field and hence the current density is reduced. The increasing of water content in the membrane enhances the overpotential, thus increases the current density. The higher inlet pressure results in more oxygen concentration, and reduce the reversed flow in the catalyst layer. The overall effects minimize the ohmic polarization effect. Increasing the porosity of the diffusion layer and the catalyst layer will enhance the oxygen diffusion which effectively provide oxygen for reaction when the concentration polarization occurred. In the catalyst layer, the direction of the gas flow is affected by the proton migration from the high electric potential to the low electric potential. Results of the protonic field effect due to alteration of the SO3 concentration (a composition index to characterize different type of Nafion) in the catalyst layer are different from others investigation and its explanation is discussed.
Bernardi D. M., “Water-balance calculations for solid-polymer-electrolyte fuel cells”, J. Electrochem. Soc., 137 (1990), pp. 3344-3350.
Bernardi D. M., Verbrugge M. W., “Mathematical model of a gas diffusion electrode boned to a polymer electrolyte”, AIChE J., 37 (1991), pp. 1151-1163.
Bernardi D. M., Verbrugge M. W., “A mathematical model of the solid-polymer-electrolyte fuel cell”, J. Electrochem. Soc., 139 (1992), pp. 2477-2490.
Berning T., Lu D.M. and Djilali N., “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, J. Power Sources, 106 (2002), pp. 284-294.
Fuller T. F., Newman J., “Experimental determination of the transport number of water in Nafion 117 membrane”, J. Electrochem. Soc., 139 (1992), pp. 1332-1339.
Fuller T. F., Newman J., “Water and thermal management in solid-polymer- electrolyte fuel cells”, J. Electrochem. Soc., 140 (1993), pp. 1218-1225.
Grujicic M., Chittajallu K. M., “Design and optimization of polymer electrolyte membrane (PEM) fuel cells”, Applied Surface Science, 227 (2004), pp. 56-72.
Gurau V., Barbir F., Liu H., “An analytical solution of a half-cell model for PEM fuel cells”, J. Electrochem. Soc., 147 (2000), pp. 2468-2477.
Hoogers G., Fuel Cell Technology Handbook, CRC Press, New York, 2003.
Karimi G., Li X., “Electroosmotic flow through polymer electrolyte membrane in PEM fuel cells”, J. Power Sources, 140 (2005), pp. 1-11.
Kazim A., Forges P., Liu H. T., “Effects of cathode operating conditions on performance of a PEM fuel cell with interdigitated flow fields”, Int. J. Energy Research, 27 (2003), pp. 401-414.
LaConti A. B., Fragala A. R., Boyack J. R.. in: McIntyre D. E., Srinivasan S., Will E. G., Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, vol. 77, 1991, pp.354
Marr C., Li X., “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell”, J. Power Sources, 77 (1999), pp. 17-27.
Nguyen T. V., White R. E., “A water and heat management model for proton-exchange-membrane fuel cells”, J. Electrochem. Soc., 140 (1993), pp. 2178-2186.
Springer T. E., Zawodzinski T. A., Gottesfeld S., “Polymer electrolyte fuel cell model”, J. Electrochem. Soc., 138 (1991), pp. 2334-2341.
Springer T. E., Wilson M. S., Gottesfeld S., “Modeling and experimental diagnostics in polymer electrolyte fuel cells”, J. Electrochem. Soc., 140 (1993), pp. 3513-3526.
Um S., Wang C. Y., Chen K. S., “Computational fluid dynamics modeling of proton exchange membrane fuel cells”, J. Electrochem. Soc., 147 (2000), pp. 4485-4493.
Wang C. Y., Cheng P., “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-I. Model development”, Int. J. Heat and Mass Transfer, 39 (1996), pp. 3607-3618.
Wang C. Y., Cheng P., “Multiphase flow and heat transfer in porous media”, Adv. Heat Transfer, 30 (1997), pp. 93-196.
Wang Y., Wang C.Y., “Transient analysis of polymer electrolyte fuel cells”, Electrochim. Acta, 50 (2005), pp. 1307-1315.
Wang Z. H., Wang C. Y. and Chen K. S., “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells”, J. Power Sources, 94 (2001), pp. 40-50.
Xie G., Okada T., “Water transport behavior in Nafion 117 membranes”, J. Electrochem. Soc., 142 (1995), pp. 3057-3062.
You L., Liu H., “A two-phase flow and transport model for the cathode of PEM fuel cells”, Int. J. Heat and Mass Transfer, 45 (2002), pp. 2277-2287.
Zawodzinski Th. A., Radzinski S., Sherman R. J., Smith V. T., Springer T. E., Gottesfeld S., “Water uptake by and transport through Nafion 117 membranes”, J. Electrochem. Soc., 140 (1993), pp. 1041-1047.
Zawodzinski Th. A., Davey J., Valerio J., Gottesfeld S., “The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes”, Electrochim. Acta, 40 (1995), pp. 297-302.