| 研究生: |
陳仕豪 Isach W.Z. Karmiadji |
|---|---|
| 論文名稱: |
氯離子入侵混凝土之擴散係數時間效應與飛灰之影響 The Effect of Fly Ash and Time Dependent Chloride Diffusion Coefficient on the Chloride Ingress in Concrete |
| 指導教授: |
黃偉慶
Wei-hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 擴散 、氯離子 、浸泡試驗 、飛灰 |
| 外文關鍵詞: | Ponding;, Life-365, 4SIGHT, Chloride, Diffusion |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低放射性最終處置設施之主體為混凝土,但不同於一般混凝土結構物之用途,低放射性最終處置設施的服務年限可能長達數百年之久。另外由於台灣環境氣候潮溼,四面環海,場址的選擇可能位於臨海區域且採用地表處置或隧道處置,此環境利於腐蝕反應之發生,使得最終處置設施長期在此環境下可能產生劣化,進而影響混凝土長期耐久性。
本研究乃針對添加不同含量飛灰之混凝土進行氯離子浸泡試驗(ponding test),以實驗室模擬混凝土工程障壁受海水入侵作用下,不同飛灰使用量之混凝土對改善混凝土抵抗氯離子入侵的成效。實驗證實添加不同含量之飛灰對混凝土抵抗氯離子入侵有顯著的效果,且使擴散係數隨時間而降低;並利用試驗結果依據費克第二定律(Fick’s second law)評估氯離子擴散係數與時間的效應及飛灰添加量之影響,同時以迴歸方法求取擴散係數隨時間變化之影響參數。另外,運用Life-365及4SIGHT等二個程式,預測氯離子入侵剖面與實驗所得氯離子入侵剖面的關連性,期未來可進一步發展,應用於低放射性廢棄物最終處置場混凝土障壁服務年限之推估。
Salt ponding test was conducted on mature concrete specimens dry-stored in laboratory condition and on concretes immediately exposed to chloride after 28 days of moist curing. Analysis on the various properties of concretes with fly ash addition and their implication to chloride ingress were done. Experimental result indicates that fly ash addition increases the maximum surface chloride value of concrete while reducing the chloride diffusivity with time. These concrete properties proved to have an important effect to the prediction of chloride ingress using error function solution to Fick’s second law. The prolonged dry-storage does not seem to have a significant impact on the change in chloride diffusion properties of the concrete specimens. General agreement between experimental data with Life-365 & 4SIGHT predicted values of concrete properties indicate the applicability of both concrete performance prediction software in considering the influence of fly ash addition and the reduction of diffusion coefficient with time.
1. Koch, Gerhardus, et.al., Corrosion Costs and Preventive Strategies in the United States, FHWA-RD-01-156, Federal Highway Administration, 2007
2. Callanan, T., and Richardson, M., Modelling Chloride Ingress in Concrete: A Comparative Study of Laboratory and Field Experience, SP212-25, ACI Special Publication, p. 389-408, 2003
3. Maheswaran, T., and Sanjayan, J. G., A semi-closed-form solution for chloride diffusion in concrete with time-varying parameters, Magazine of Concrete Research, 56, p. 359-366, 2004
4. Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides, Life-365 Consortium II, 2010
5. Thomas, Michael D. A., Bamforth, Phil B., Modelling chloride diffusion in concrete: Effect of fly ash and slag, Cement and Concrete Research, 29, p. 487-495, 1999
6. Bijen, Jan, Benefits of slag and fly ash, Construction and Building Materials, 10(5), p. 309-314, 1996,
7. Luping, Tang, and Gulikers, Joost, On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete, Cement and Concrete Research, 37, p. 589-595, 2007
8. Saetta, Anna V., Scotta, Roberto V., and Vitalini, Renato V., Analysis of Chloride Diffusion into Partially Saturated Concrete, ACI Materials Journal, 90(5), p. 441-451, 1993
9. Angst, Ueli, Elsener, Bernhard, Larsen, Claus K., Vennesland, Oystein, Critical chloride content in reinforced concrete – A review, Cement and Concrete Research, 39, p. 1122-1138, 2009
10. Han, Sang-Hun, Influence of diffusion coefficient on chloride ion penetration of concrete structure, Construction and Building Materials, 21, p. 370-378, 2007,
11. Martin Perez, B., Zibara, H., Hooton, R. D., and Thomas, M. D. A., A Study of the effect of chloride binding on service life predictions, Cement and Concrete Research, 30, p. 1215-1223, 2000
12. Boddy, Andrea, Bentz, Evan, Thomas, M. D. A., and Hooton, R. D., An overview and sensitivity study of a multimechanistic chloride transport model, Cement and Concrete Research, 29, p. 827-837, 1999
13. Martys, Nicos S., Survey of Concrete Transport Properties and their Measurement, NISTIR 5592, U.S. Department of Commerce, 1995
14. Wong, S. F., Wee, T. H., Swaddiwudhipong, S., and Lee, S. L., Study of water movement in concrete, Magazine of Concrete Research, 53(3), p. 205-220, 2001
15. Aldred, J. M., and Rangan, B. V., The Influence of Wick Action on Chloride Transport in Concrete, SP212-50, ACI Special Publication, p. 807-822, 2003
16. Puyate, Y. T., and Lawrence, C. J., Steady state solutions for chloride distribution due to wick action in concrete, Chemical Engineering Science, 55, p. 3329-3334, 2000
17. Song, Sheng-Rong, et.al, Hydrochemical Changes in Spring Waters in Taiwan: Implications for Evaluating Sites for Earthquake Precursory Monitoring, TAO, 16(4), p. 745-762, 2005
18. Stanish, K. D., Hooton, R. D., and Thomas, M. D. A., Testing the Chloride Penetration Resistance of Concrete: A Literature Review, Federal Highway Administration, 2000
19. Khitab, A., Lorente, S., and Ollivier, J. P., Predictive model for chloride penetration through concrete, Magazine of Concrete Research, 57, No. 9, p. 511-520, 2005
20. Chatterji, S., On the Applicability of Fick’s Second Law to Chloride Ion Migration Through Portland Cement Concrete, Cement and Concrete Research, 25(2), p. 299-303, 1995
21. Lu, Xinying, Application of the Nernst-Einstein Equation to Concrete, Cement and Concrete Research, 27(2), p. 293-302, 1997
22. Sugiyama, T., Ritthichauy, W., Tsuji, Y., Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete, Cement and Concrete Research, 38, p. 49-67, 2008
23. Stanish, Kyle, and Thomas, Michael, The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients, Cement and Concrete Research, 33, p. 55-62, 2003
24. Nokken, Michelle, Boddy, Andrea, Hooton, R. D., and Thomas, M. D. A., Time dependent diffusion in concrete – three laboratory studies, Cement and Concrete Research, 36, p. 200-207, 2006
25. Yeih, W. D., Huang, R., and Chang, J. J., A Study of Chloride Diffusion Properties of Concrete at Early Age, Journal of Marine Science and Technology, 2(1), p. 61-67, 1994
26. Buenfeld, N. R., and Okundi, E., Effect of cement content on transport in concrete, Magazine of Concrete Research, 50(4), p. 339-351, 1998
27. Hobbs, D. W., Aggregate influence on chloride ion diffusion into concrete, Cement and Concrete Research, 29, p. 1995-1998, 1999
28. Bentz., Dale P., A virtual rapid chloride permeability test, Cement and Concrete Composites, 29, p. 723-731, 2007
29. Song, Ha-Won, Lee, Chang-Hong, Ann, Ki Yong, Factors influencing chloride transport in concrete structures exposed to marine environments, Cement and Concrete Composites, 30, p. 113-121, 2008
30. Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., and Cail, K., Use of ternary cementitious systems containing silica fume and fly ash in concrete, Cement and Concrete Research, 29, p. 1207-1214, 1999
31. Boddy, Andrea, Hooton, R. D., and Gruber, K. A., Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin, Cement and Concrete Research, 31, p. 759-765, 2001
32. Gruber, K. A., Ramlochan, Terry, Boddy, Andrea, Hooton, R. D., and Thomas, M. D. A., Increasing concrete durability with high-reactivity metakaolin, Cement & Concrete Composites, 23, p. 479-484, 2001
33. Bentz, D. P., A review of early-age properties of cement-based materials, Cement and Concrete Research, 38, p. 196-204, 2008
34. Snyder, Kenneth A., and Clifton, James R., 4SIGHT Manual: A Computer Program for Modelling Degradation of Underground Low Level Waste Concrete Vaults, NISTIR 5612, Department of Commerce, 1995
35. Tang, L., and Sorensen, H. E., Precision of the Nordic test methods for measuring the chloride diffusion/migration coefficients of concrete, Materials and Structures, 34, p. 479-485, 2001
36. Zhang, Tiewei, and Gjorv, Odd E., Diffusion Behaviour of Chloride Ions in Concrete, Cement and Concrete Research, 26(6), p. 907-917, 1996
37. Snyder, K. A., The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations, Concrete Science and Engineering, 3(12), p. 216-224, 2001
38. Snyder, K. A., Validation and Modification of the 4SIGHT Computer Program, NISTIR 6747, Department of Commerce, 2001
39. Thomas, Michael, Chloride Thresholds in Marine Concrete, Cement and Concrete Research, 26(4), p. 513-519, 1996
40. Malvar, L.J., Alkali-Silica Reaction Mitigation State-of-the-Art, TR-2195-SHR, Naval Facilities Engineering Service Center, 2001
41. Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials, T 260-1, AASHTO, 2001
42. McGrath, Patrick F., and Hooton, R. Doug, Re-evaluation of the AASHTO T259 90-day salt ponding test, Cement and Concrete Research, 29, p. 1239-1248, 1999,
43. Bentz, Dale P., Feng, Xiuping, and Hooton, R. Douglas, Time-Dependent Diffusivities: Possible Misinterpretation due to Spatial Dependence, Proc. International RILEM Workshop, Testing and Modelling the Chloride Ingress into Concrete, Paris, France, p. 225-233, 2000
44. Costa, A., and Appleton, J., Chloride penetration into concrete in marine environment – Part I : Main parameters affecting chloride penetration, Materials and Structures, 32, p. 242-259, 1999
45. Costa, A., and Appleton, J., Chloride penetration into concrete in marine environment – Part II: Prediction of long term chloride penetration, Materials and Structures, 32, p. 354-359, 1999
46. Life-365 Version 2.0.1, September 2009, The Life-365 Consortium, 1 March 2010 < http://www.life-365.org/download.html>
47. 4SIGHT, In Computer Integrated Knowledge System for High Performance Concrete, Retrieved from http://concrete.nist.gov/4sight
48. Standard Test Methods for Chemical Analysis of Hydraulic Cement, C114-09a, ASTM International, 2010
49. Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete, C 1152/ C 1152M-04, ASTM International, 2004
50. DataFit 9.0, Oakdale Engineering, 1 March 2010 <http://www.curvefitting.com/download.htm>
51. LAB Fit Curve Fitting Software, Universidade Federal de Campina Grande, 1 March 2010 <http://zeus.df.ufcg.edu.br/labfit/download.htm>
52. Estimation of Pore Solution Conductivity, In Computer Integrated Knowledge System for High Performance Concrete, Retrieved from http://ciks.cbt.nist.gov/poresolncalc.html
53. Virtual Rapid Chloride Permeability Test, In Computer Integrated Knowledge System for High Performance Concrete, Retrieved from http://ciks.cbt.nist.gov/VirtualRCPT.html
54. Sodium Chloride Density Concentration Table, In Mettler Toledo, Retrieved from http://us.mt.com/us/en/home/supportive_content/application_editorials.Sodium_Chloride_de_e.twoColEd.html