| 研究生: |
謝承志 Cheng-Chih Hsieh |
|---|---|
| 論文名稱: |
Fano共振在奈米光學波導中的耦合效應分析 Analysis of Coupling Effects of Fano Resonances in Nanophotonic Waveguides |
| 指導教授: |
欒丕綱
Pi-Gang Luan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 法諾共振 、金屬-絕緣體-金屬 |
| 外文關鍵詞: | fano resonance, Metal-Insulator-Metal |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究在"金屬-絕緣體-金屬"(Metal-insulator-metal, MIM)波導系統中耦合圓形及梯形共振腔可得到具有Fano 共振的共振波長;並比較層狀結構與非層狀結構在折射率響應、靈敏度(S)及品質因數(FOM) 方面的差異, 將其傳輸特性採用有限元素法(Finite element method, FEM)進行數值模擬研究。 針對本文所提出的結構,研究發現透過改變系統中材料的折射率及結構幾何參數,即可輕鬆調整 Fano 共振的共振波長,特別的是在特定的厚度下,靈敏度可進一步增強,並超過原結構。
This study focuses on investigating the Fano resonance characteristics in metal-insulator-metal (MIM) waveguide systems integrated with circular and trapezoidal resonant cavities. Specifically, it compares layered and non-layered structures regarding their refractive index response, sensitivity (S), and figure of merit (FOM), subsequently analyzing their impacts on transmission properties. The finite element method (FEM) is employed for numerical simulations of the proposed structures. The findings reveal that by adjusting material refractive indices and geometric parameters within the system, the resonance wavelength of the Fano resonance can be precisely tuned. Notably, the sensitivity performance significantly improves by modifying the thickness of specific layers, surpassing that of the original non-layered structures.
[1] W. L. Barnes et al.,“Surface plasmon subwavelength optics,”Nature 424, 824 (2003).
[2] S. A. Maier et al.,“Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,”Nat. Mater. 2, 229 (2003).
[3] D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186 (2005).
[4] S. H. Chang et al., “Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides,” Opt. Express 15, 1755 (2007).
[5] D. F. P. Pile et al., “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[6] L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645 (2005).
[7] R. Zia et al., “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442 (2004).
[8] A. Melloni, “Synthesis of a parallel-coupled ring-resonator filter,” Opt. Lett. 26, 917 (2001).
[9] B. E. Little, S. T. Chu, J. V. Hryniewicz et al., “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344 (2000).
[10] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257 (2010).
[11] M. F. Limonov, “Fano resonance for applications,” Adv. Opt. Photonics 13, 703 (2021).
[12] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543 (2017).
[13] 邱國斌、蔡定平, “金屬表面電漿簡介,” 物理雙月刊 18, 472 (2006).
[14] K. E. Oughstun and N. A. Cartwright, “On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion,” Opt. Soc. Am. (2003).
[15] Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259 (2006).
[16] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919 (1973).
[17] J. R. Pierce, “Coupling of modes of propagation,” J. Appl. Phys. 25, 179 (1954).
[18] W. Frei, “Using perfectly matched layers and scattering boundary conditions for wave electromagnetics problems,” COMSOL Blog, Jan. 28, 2015.
[19] A. Dutta and E. M. Vartiainen, “Spatial localization of hotspots in Fano-resonant plasmonic oligomers for surface-enhanced coherent anti-Stokes Raman scattering,” J. Eur. Opt. Soc. Rapid Publ. 16, 8 (2020).
[20] Z. Zhang, J. Wang, Y. Zhao, D. Lu, and Z. Xiong, Plasmonics 6, 773 (2011).
[21] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103 (2010).
[22] H. Liu, Y. Gao, B. Zhu, G. Ren, and S. Jian, “A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators,” Opt. Commun. 334, 164 (2015).
[23] R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112 (2009).
[24] N. Akter et al., “A Review of THz Technologies for Rapid Sensing and Detection of Viruses including SARS-CoV-2,” Biosensors 11, 336 (2021).