跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張美玉
Mei-Yu Chang
論文名稱: 積雲參數化方法對MJO 肇始和傳播的影響
Impacts of Cumulus Schemes on the Initiation and Propagation of MJO
指導教授: 林沛練
Pay-Liam Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 季內震盪積雲參數化方法
外文關鍵詞: MJO, cumulus scheme
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用中央氣象局全球預報模式偶合SIT海洋模式,選擇DYNAMO實驗期間2個主要MJO事件,探討不同積雲參數化方法,TDK法(Tiedtke 1989; Nordeng 1994)和SAS法(Simplified Arakawa-Schubert; Pan and Wu 1995; Han and Pan 2011) 對此期間MJO事件發生和傳播之影響。
    模擬結果顯示,TDK法在西赤道印度洋區域,可分別於15 天及45天前,預報MJO-1和MJO-2的發生;SAS法則否。診斷結果指出,TDK法可模擬出類似觀測的季節內尺度 OLR-SST (Outgoing Longwave Radiation-Surface Sea Temperature;外逸長波輻射¬-海溫)距平的演變關係,SAS法的預報則未能達此標準。探究其原因,在西赤道印度洋區MJO抑制期的海溫距平,主要受地表加熱通量的影響;海溫距平的變化,將引起邊界層的輻合及垂直上升運動,產生氣柱垂直積分的濕靜能正變化率,形成不穩定的大氣成層結構,進而激發對流的發展及MJO的發生。TDK法可成功模擬類似觀測的OLR-SST-濕靜能正變化率距平之演變關係;SAS法則否。
    另外,兩預報的傳播特性亦有明顯的差異,TDK法可模擬出MJO的東傳,SAS法則顯示西傳的預報;此歸因於TDK法可模擬出相對於MJO中心,氣柱垂直積分的濕靜能變化率具有正緯向梯度之觀測特性;SAS法所模擬的濕靜能變化率之緯向梯度特性則相反。預報差異的原因主要來自濕靜能垂直和水平平流距平的貢獻。


    An operational weather forecast model, coupled to an oceanic model, was used to predict the initiation and propagation of two major MJO events during the DYNAMO campaign period. Two convective parameterization schemes were used to understand the sensitivity of the forecast to the model cumulus scheme. The first is the Tiedtke (TDK) scheme, and the second is the Simplified Arakawa-Schubert (SAS) scheme. The TDK scheme was able to forecast the MJO-1 and MJO-2 initiation at 15-day and 45-day lead, respectively, while the SAS scheme failed to predict the convection onset in the western equatorial Indian Ocean (WEIO).
    The diagnosis of the forecast results indicates that the successful prediction with the TDK scheme was attributed to the model capability to reproduce the observed intraseasonal OLR-SST relationship. On one hand, the SSTA over the WEIO was induced by surface heat flux anomalies associated with the preceding suppressed-phase MJO. The change of the SSTA, in turn, caused boundary layer convergence and ascending motion, which further induced a positive column-integrated moist static energy (MSE) tendency, setting up a convectively unstable stratification for MJO initiation. The forecast with the SAS scheme failed to reproduce the observed OLR-SST-MSE relation.
    The propagation characteristics differed markedly between the two forecasts. Pronounced eastward phase propagation in the TDK scheme is attributed to a positive zonal gradient of the MSE tendency relative to the MJO center, similar to the observed, whereas a reversed gradient appeared in the forecast with the SAS scheme with dominant westward propagation. The difference is primarily attributed to anomalous vertical and horizontal MSE advection.

    目 錄 中文摘要 ……………………………………………………………… i 英文摘要 ……………………………………………………………… ii 誌謝 ……………………………………………………………… iii 目錄 ……………………………………………………………… iv 圖目錄 ……………………………………………………………… v 表目錄 ……………………………………………………………… xi 一、 緒論………………………………………………………… 1 二、 模式………………………………………………………… 4 三、 資料與研究方法…………………………………………… 12 四、 分析與模擬………………………………………………… 15 4-1 MJO肇始過程之診斷………………………………........... 16 4-2 MJO傳播機制之診斷……………………………………... 22 五、 結論與討論………………………………………………… 25 參考文獻 ……………………………………………………………… 31 附圖 ……………………………………………………………… 40 附表 ……………………………………………………………… 60

    參考文獻

    汪鳳如與馮欽賜,2005:中央氣象局全球預報系統之地表過程的評估測試。氣象學報,45,11-32。
    汪鳳如與馮欽賜,2011: 中央氣象局全球模式物理參數化之更新:邊界層及積雲參數化。大氣科學,213-236。
    汪鳳如與馮欽賜,2011:Noah 地表模式於中央氣象局全球預報系統的應用評估與調整。氣象學報,51,25-40。
    汪鳳如與馮欽賜,2012:NSAS 及 SAS 積雲參數法於中央氣象局全球預報系統的比較評估。氣象學報,52,19-42。
    張美玉,2016 :中央氣象局全球預報模式RRTMG輻射參數化及臭氧參數化方法影響評估。天氣分析與預報研討會論文彙編,2016年10月4-6日,臺北,A2-14。
    馮欽賜、李長華,2000:中央氣象局全球模式之平行計算處理及在新超級電腦上之測試。天氣分析與預報研討會論文彙編,2000年7月10-12日,臺北,294-297。
    Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913–941.
    Arakawa, A, and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, J. Atmos. Sci. 31, 674–701.
    Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci, 28, 181-1894-701 Clough, S.A., M.W. Shephard, E.J. Mlawer, J.S. Delamere, M.J. Iacono, K. Cady-Pereira, S. Boukabara, and P.D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer., 91, 233-244.
    Ciesielski P. E. et al., 2017: Relationships between radiation, clouds, and convection during DYNAMO. J. Geophys. Res., 122, 2529–2548.
    Clough, S.A., M.W. Shephard, E.J. Mlawer, J.S. Delamere, M.J. Iacono, K. Cady-Pereira, S. Boukabara, and P.D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer., 91, 233-244.
    Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597.
    Detering, H. W., and D. Etling, 1985: Application of the E-ε turbulence model to the atmospheric boundary layer. Bound–Layer Meteor., 33,113-133.
    Ek, M., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesocale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296
    Emanuel, K. A. 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340.
    Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomgenuous atmospheres. J. Atmos. Sci., 49, 2139-2156.
    Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008-2025.
    Fu, Q. 1996: An Accurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for Climate Models. J. Climate, 9, 2058-2082.
    Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 2799-2812.
    Grant, A. L. M., 2001: Cloud-base fluxes in the cumulus-capped boundary-layer. Quart. J. Roy. Meteor. Soc., 127, 407-422.
    Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787.
    Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather Forecast, 26, 520-533.
    Harshvardhan, R. Davies, D. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 1009-1016.
    Hendon, H. H. ,1988: A simple model of the 40–50 day oscillation, J. Atmos. Sci., 45, 569–584.
    Higgins, W and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403-417.
    Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.
    Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation. J. Climate, 25, 4914–4931, doi: 10.1175/JCLI-D-11-00310.1.
    Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative-convective systems, J. Atmos. Sci., 51, 1089–1099.
    Hu, Q., and D. A. Randall, 1995: Low-frequency oscillations in radiative-convective systems. Part II: An idealized model, J. Atmos. Sci., 52, 478–490.
    Hu, Y., and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728–742.
    Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda and S.J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 6185–6214.
    Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.W. Shephard, S.A. Clough, and W.D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
    Jiang, X. and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 4718–4748
    Jiang, X., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795.
    Jones C., D. E. Waliser, and C. Gautier, 1998: The influence of the Madden–Julian Oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11, 1057–1072.
    Kessler, W. and R. Kleeman, 2000: Rectification of the Madden-Julian Oscillation into the ENSO cycle. J. Climate, 13, 3560-3575.
    Krishnamurti, T. N., D. Dosterhof, and A. Mehta, 1988: Air–sea interaction on the time scale of 30–50 days. J. Atmos. Sci., 45, 1304–1322.
    Lau K. H., and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465–472.
    Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950–972.
    Li, J.-L. F. and F.-J. Wang, 2000:Improved shallow cumulus process in the Central Weather Bureau global forecast system。天氣分析與預報研討會,2000年7月10-12日,臺北,288-293。
    Li, T., 2014: Recent advance in understanding the dynamics of the Madden-Julian oscillation. J. Meteor. Res., 28, 1–33.
    ——, F. Tam, X. Fu, T. Zhou, and W. Zhu, 2008: Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean, Atmosphere-Ocean Science Letters, 1, 18-23.
    ——, C. Zhao, P.-C. Hsu, and T. Nasuno, 2015: MJO Initiation Processes over the Tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 2121-2135.
    ——, and B. Wang, 1994: The influence of sea surface temperature on the tropical intraseasonal oscillation: a numerical study. Mon. Wea. Rev., 122, 2349-2362.
    ——, and T.-Y. Wang, 2019: Impact of Atmosphere-Ocean Interactions on Propagation and Initiation of Boreal Winter and Summer Intraseasonal Oscillations. Chapter of book “Tropical and Extra-tropical Air-Sea Interactions” (Editor: S. K. Behera, Publisher: Elsevier).
    Liebmann, B., and Smith, C.A., 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77, 1275 –1277.
    Lin, J., B. E. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation, J. Atmos. Sci., 61, 296–309.
    ——, D. Kim, M.-I. Lee, and I.-S. Kang, 2007: Effects of cloud radiative heating on AGCM simulations of convectively coupled equatorial waves. J. Geophys. Res., 112, D24107, doi:10.1029/2006JD008291.
    Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690.
    Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.
    Liou, C.-S, J.-H. Chen, C.-T. Terng, F.-J. Wang, C.-T. Fong, T. E. Rosmond, H.-C. Kuo, C.-H. Shiao, and M.-D. Cheng, 1997: The second generation global forecast system at the Central Weather Bureau in Taiwan. Wea. Forecasting, 12, 653-663.
    Lord, S. J., 1978: Development and observational verification of cumulus cloud parameterization. Ph. D. dissertation, University of California, Los Angeles, 359pp.
    Madden R. and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific, J. Atmos. Sci., 28, 702-708.
    Madden R. and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123.
    Mahrt, L., and H. -L. Pan, 1984: A two-layer model of soil hydrology. Boundary Layer Meteorol., 29, 1-20.
    Manabe, S., 1969: Climate and the ocean circulation, 1. The atmospheric circulation and the hydrology of the earth's surface. Mon. Weath. Rev. 97, 739-774.
    McCormack et al., 2006: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6, 4943–4972.
    Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978–1002.
    Murakami, T., and T. Nakazawa, 1985: Tropical 45 day oscillations during the 1979 Northern Hemisphere summer. J. Atmos. Sci., 42, 1107–1122
    Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget, Mon. Weather Rev., 115, 3–12.
    Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Tech. Memo. 206, 41pp.
    Oreopoulos, L., and H. W. Barker, 1999: Accounting or subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Q. J. R. Meteorol. Soc., 125, 301–333.
    Pan, and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC Medium-Range Forecast model. NMC Office Note 409, 40pp.
    Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in circulation and numerical weather prediction model through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.
    Pincus, R., H.W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J. Geophys. Res., 108, D13, doi:10.1029/2002JD003322.
    Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 2807–2819,
    Rui, H. and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies, J. Atmos. Sci., 47, 357-379.
    Slingo, J. M. et al., 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Clim. Dyn., 12, 325–357
    Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 1691–1705.
    Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187–192.
    Sperber, K. R., 2003: Propagation and the vertical structure of the Madden-Julian Oscillation, Mon. Weather Rev., 131, 3018–3037.
    Tiedtke, M., 1989: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Monthly Weather Review, 117, 1779-1800.
    Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensivity to surface evaporation. Bound. Layer Meteor., 37, 129-148.
    Tsuang B- J, Tu C-Y, Arpe K, 2001: Lake parameterization for climate models. Max-Planck-Institute for Meteorology Rept., 316, p72
    Tsuang et al., 2009: A more accurate scheme for calculating Earth’s skin temperature. Climate Dynamics, 32, 251-272.
    Tu C-Y, Tsuang B-J, 2005: Cool-skin simulation by a one-column ocean model. Geophys Res Lett, 32: L22602. doi:10.1029/2005 GL024252
    Wang, B. 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.
    ——, and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteor. Atmos. Phys., 44, 43–61.
    ——, and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400.
    ——, and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian Oscillation. J. Climate, 11, 2116–2135.
    Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental Causes of Propagating and Non-propagating MJOs in MJOTF/GASS models. J. Climate, 30, 3743-3769.
    Wang, L., T. Li, and T. Nasuno, 2018: Impact of Rossby and Kelvin Wave Components on MJO Eastward Propagation. Journal of Climate, 31, 6913-6931.
    Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 1838–1858.
    Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611-627.
    Yanai, M. and Johnson, R. H., 1993: Impacts of cumulus convection on thermodynamic fields. Meteorological Mongraphs, K.A. Emanuel and D. J. Raymond, Amer. Meteor. Soc., 39-41.
    Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with stratosphere. Atmos. Sci., 48, 377–389.
    Zhang, C. 2005: Madden-Julian Oscillation. Reviews of Geophysics, 43, 1-36.
    Zhang, C., and M.-D. Chou, 1999: Variability of water vapor, infrared radiative cooling, and atmospheric instability for deep convection in the equatorial western Pacific. J. Atmos. Sci., 56, 711–723.
    Zhang, C. and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. J. Climate, 15, 2429-2445.
    Zhao, C.-B., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291-307.
    Zhao and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 1931–1953.

    QR CODE
    :::