| 研究生: |
莊耀中 Yao-Chung Chuang |
|---|---|
| 論文名稱: |
MODIS和NOAA衛星資料反演之大氣溫濕度剖線在夏季午後對流前兆分析之應用 Prediction of the Summer Afternoon Convection Onset with MODIS and NOAA |
| 指導教授: |
劉振榮
Gin-Rong Liu 陳哲俊 Jer-Jiunn Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 對流 、大氣穩定度 、輻散場 |
| 外文關鍵詞: | convection, atmospheric stability, NOAA, MODIS |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區在夏季期間常有劇烈午後熱對流的發生,伴隨而來的雷雨往往造成航空和民生方面的困擾。由於午後熱對流發展迅速且常生成於台灣四周海域,且傳統的觀測資料容易受到空間和時間的限制,因此衛星觀測資料之運用更顯得重要。本研究主要目的即在於利用TERRA及AQUA之MODIS(Moderate Resolution Imaging Spectro- radiometer)和NOAA(National Oceanic and Atmospheric Adminis- tration)衛星資料反演大氣溫濕垂直剖線將以應用於夏季午後熱對流發生之前兆分析。
併用MODIS和NOAA衛星資料時,首先要了解二組衛星資料是否具有一致性。本研究利用2003年1~10月衛星資料建立統計迴歸式以修正二組衛星資料間的差異,再用2002年9~12月衛星資料做為驗證。結果顯示溫度剖線的均方根誤差在1.5~2 ℃,露點剖線的均方根誤差在2~3 ℃,顯示這二組衛星資料具有一致性。再利用大氣溫濕垂直剖線估算大氣穩定指數K指數(K Index,KI)、總指數(Total Totals Index,TTI)和水氣含量等大氣熱力參數,並由地面測站資料計算輻散場代表以大氣動力參數,即可對夏季午後對流的發展進行分析。
本研究選取2003年6~9月的對流個案以建立各參數(大氣穩定指數、水氣含量和輻散場)門檻值,並選取2004和2005年6~9月對流個案做為驗證。結果顯示同時考慮此三項參數時,其2004與2005年整體準確率分別為76 %與74 %,隱含此方法有實用的價值。
Intense convections often occur in Taiwan during the sizzling summer afternoon. The ensuing afternoon thunderstorms may cause damages, or disrupt aviation operations. As the afternoon convection develops rapidly around the Taiwan region, the data observed by traditional methods are easily limited, both spatially and temporally. Thus, the utilization of satellite observational data is becoming ever increasingly important. The major purpose of this research is to apply a method in retrieving the temperature and dew point profiles from the MODIS and NOAA satellite data, where they can be applied in the analysis of summer afternoon convection.
In the employment of the MODIS and NOAA satellite data, it is important to understand whether or not the two types of data are consistent with each other. Thus, by using data from the two satellites between January and October of 2003, a regression equation is performed, to remove the consistencies between them. Another group of data from the two satellites (between September and December of 2002) was employed for verification. Results showed that the root mean square error of the retrieved temperature and dew point profiles was approximately 1.5~2 oC and 2~3 oC, respectively.
The retrieved temperature and dew point profiles were employed to estimate the atmospheric stability index or K index (KI), the total index or Total Totals Index (TTI), the water vapor content, along with other atmospheric thermal parameters. In addition, ground station data was used to calculate the divergence field in delineating the atmospheric dynamic parameters. Through these two approaches, it is hoped that the usual occurrence of convection development during the summer afternoon can be accurately analyzed.
This research chose convection cases that occurred between June to September of 2003 to set up the threshold value of three important parameters----Atmospheric stability index, Water vapor content and Divergence field . Convection cases recorded between June to September of 2004 and 2005, were then employed for verification. By considering all three parameters, the results showed that the prediction accuracy for actual convection activity during 2004 and 2005 reached 76% and 74 %, respectively; demonstrating the practical applications in this method.
林則銘,1975:危害飛行氣象因素客觀預報之研究-雷雨部分,空軍氣象聯隊研
究報告第001 號,1-23。
胡仲英,1977:高空天氣圖客觀分析之研究。大氣科學第4期,1-10。
吳宗堯、曾忠一、梁文傑,1980:亞洲地區氣象資料之收集檢定與分析及程式處理系統之研究(一)。氣象學報第26卷第1和第2期,1-69。
陳泰然,1993,天氣學原理,聯經書局,台北,337頁。
林傳堯,1996:梅雨季太平洋高壓系統影響下台灣地形與午後對流降水關係之研究。國立中央大學大氣物理研究所博士論文,241 頁。
涂明聖,2004:2002年梅雨季中正與松山機場低空風切之監測研究。大氣科學第33卷2期,119-142。
葉南慶,2005:衛星資料在夏季午後熱對流潛勢環境之初步分析。大氣科學第33卷3期,189-214。
Acee, E. M. and K. E. Dowell, 1974: Observation studies of mesoscale cellular convection. Journal, of applied Meteorology, 13, 46-53.
Agge, E. M. and T. S. Chen, 1973: A model for investigating eddy viscosity effects on mesoscale cellular convection. J. Atmos. Sci., 30,180-189.
Bluestein, H. B., 1985: An observational study of a Mesoscale Area of convection under weak synoptic-scale forcing. Mon. Wea. Rev., 113, 520-538.
Burpee, R. W., 1979: Peninsula-scale convergence in the south Florida sea breeze. Mon. Wea. Rev., 107, 852-860.
Cifelli, R., L. Carey, W. A. Petersen, and S. A. Rutledge, 2004:An Ensemble Study of Wet Season Convection in Southwest Amazonia: Kinematics and Implications for Diabatic Heating.Journal of Climate, Vol. 17, No. 24, 4692–4707.
Djuric, Dusan 1994: Weather analysis, Englewood Cliffs, N.J Prentice Hall, 561.
Frank, N. L., and D. L. Smith, 1968:On the correlation of radar echoes over Florida with various meteorological parameters. J. Appl.Meteor., 7, 712-714.
George, J.J. 1960.Weather forecasting for Aeronautics, New York, Academic Press, 415.
Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery-visible and infrared studies. Mon. Wea. Rev., 106, 1153-1171.
Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001:Determination of Precipitable Water and Cloud Liquid Water Over Oceans from the NOAA15 Advanced Microwave Sounding Unit. J. Geophys. Res., 106, 2943-2953.
Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams,2002:Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130, 1493–1509.
Hubert, L. F., 1966: Mesoscale cellular convection. Meteor Satellits Lab. Washington, D. C. NOAA, Rept. 37, 68.
Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. Purdom, C. S. Veldon, N. C. Grody, and S. J. Kusselson, 2000:Satellite Analysis of Tropical Cyclones Using the Advanced Microwave Sounder Unit(AMSU). Bull. Amer. Meteor. Soc., Vol. 81, No.6, 1241-1259.
King, J. I. F., 1956: The radiative heat of planet Earth. J. Appl. Meteor., 10, 133-136.
King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B. C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, 2003: Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442-458.
Krueger, A. F., and S. Fritz, 1961: Cellular cloud patterns revealed by TIROS-1. AWS. Tech. Rep., 13, 1-7.
Li, J., W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, T. H. Actor, and H. M. Woolf, 1999: International ATOVS processing package:The algorithm development and its application real data processing. Technical Proceedings of the Tenth International TOVS Study Conference., 1-25.
Menzel, W. P., Frances C. H., Timothy J. S., and Robert M., 1998: Application of GOES-8/9 Soundings to Weather Forecasting and Nowcasting. Bulletin of American Meterorological Society, 79, No.10, 2059-2077.
Menzel, W. P., Suzanne. W. S., Jun. L., Liam. E. G., 2002: MODIS Atmospheric Profile Retrieval - Algorithm Theoretical Basis Document. University of Wisconsin-Madison, 1-39.
Miller, R. C., 1967: Note on analysis and severe storm forecasting procedures of the Military Weather Warning Center, USAF, Scott AFB, IL, AWS Tech. Rep. 20, 94-108.
Negri, A. J., and R. F. Adler, 1987: Infrared and visible satellite rain estimation. Part1: A grid cell approach. J. Climate. appl. Meteor., 26, 1553-1564.
Shi, L., 2001:Retrieval of atmospheric temperature profiles from AMSU-A measurement using a neural network approach. J. Atmos. Occeanic Technol., 18, 340-347.
Smith, W. L., 1970: Iterative solution of the radiative transfer eqution for the temperature and absorbing gas profile of an atmosphere. Appl. Opt., 9, 1993-1999.
Smith, W. L., H. M. Woolf, and A. J. Schreiner, 1985: Simultaneous retrieval of surface atmospheric parameters: A physical and analytical direct approach. Journal of Applied Meteorology, 16, 221-232.
Seemann, S., J. Li, W. P. Menzel, and L. Gumley, 2003: Operational Retrieval of Atmospheric Temperature, Moisture, and Ozone from MODIS Infrared Radiances. Journal of Applied Meteorology, Vol. 42, 1072-1091.
Watson, R. L. Holle, R. E. Lopez, R. Ortiz, and J. R. Nicholson, 1991:Surface wind convergence as a short-term predictor of cloud-to-ground lightning at Kennedy Space Center. Wea. Forecasting, 6, 49-64.
Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys.Res., 107, 8082.
Yeh, H. -C., and Y. –L. Chen, 1998: Characteristics of rainfall distributions over Taiwan Area Mesoscale Experiment (TAMEX). Mon. Wea. Rev., 37, 1457-1469.