跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建成
Chien-Cheng Chen
論文名稱: 高速, 低耗能, 單模態 850nm波段面射型雷射在光連結上應用
High-Speed, Low-Power-Consumption, and Single-Mode 850nmVertical-Cavity Surface-Emitting Lasersfor The Application of Optical Interconnect
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 60
中文關鍵詞: 面射型雷射高速半導體雷射
外文關鍵詞: High speed, VCSEL, semiconductor laser
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們製作一個高效能鋅擴散850nm波段的單模態面射型雷射。其元件擁有較低的臨限電流0.5mA、較高的微分量子效率(80%)及電流調制效率為8.2 GHz/mA1/2,從低的臨限電流至高的飽和電流下元件皆維持穩定的單模態操作,而最大的輸出光功率達到7.3mW。其元件在一個小的操作電流(1.8mA)及較小信號偏壓(0.5Vp-p)就可以使10 Gb/s的眼圖打開及其元件的傳輸量比功率消耗率為6.5 Gps/mW。
    然而此高功率單模面射型雷射依然存在空間電洞不足問題,此效應使元件之頻寬在低頻時即有滑落之現象;欲改善此問題,我們製作了三種具有不同鋅擴散深度的元件,進而比較其直流及高頻特性,實驗後發現擴散深度介於中間之元件,可以改善先前所提及之低頻滑落現象,而其激發之光點可在空間中保持單模態操作,與多模態操作之元件相比有一個較好的對準誤差,因此此元件在具有多模態雷射之高頻特性下,亦同時擁有單模態雷射之高對準誤差,同時藉由通過10 Gb/s的眼圖,更證明此最佳化元件可達到高速、低消耗功率的目標。


    We demonstrate a high-performance Zn-diffusion single-mode 850nm vertical-cavity surface-emitting laser, which has a low threshold current (0.5 mA), high differential efficiency(80%), high modulation current efficiency (8.2 GHz/mA1/2), and can sustain the single fundamental-mode output with a maximum output power of 7.3 mW under the full range of bias currents. With this device we can achieve 10 Gb/s eye-opening at a low bias current (1.8 mA) and a peak-to-peak driving-voltage of 0.5 V, which corresponds to a very high data-rate/power-dissipation ratio of 6.5 Gps/mW.
    However, this device still suffers form the low-frequency roll-off caused by the spatial hole burning (SHB) effect, and degrades the speed performance. In order to solve the mentioned problem, we fabricated the devices with three different depth of Zn-diffusion to compare their DC and RF characteristics. According to our experiment results, we can find that minimization of low-frequency roll-off has been observed in the device with middle depth of Zn-diffusion, and the lasing spot can still maintain spatial single-mode which the alignment tolerance is larger then the multimode device. Therefore, the demonstrated device can have high speed performance of multimode device and the large alignment tolerance of single mode device at the same time. In light of the clearly opened eye-pattern at 10 Gb/s operating speed, we can further evidence that our device can achieve high-speed, low power-dissipation performance.

    摘 要.....................................................i Abstract.................................................ii 致謝....................................................iii 目 錄.....................................................v 圖目錄..................................................vii 表目錄...................................................xi 第一章 序 論..............................................1 1-1 簡介.........................................1 1-2 面射型雷射(VCSEL)簡介......................3 1-3 高速單模態面射型雷射製作.....................4 第二章 理 論..............................................7 2-1 VCSEL的磊晶結構..............................7 2-2 鋅擴散於DBR..................................9 2-3 VCSEL的選擇性水氧化理論.....................11 2-4 發散角......................................13 第三章 理 論.............................................16 3-1 鋅擴散製程..................................16 3-2 水氣氧化....................................18 3-3 製作電極以及金屬回火(Annealing).............19 3-4平坦化及製作金屬接線.........................22 第四章 量測結果與討論....................................24 4.1量測系統.....................................24 4.1.1. 電流對電壓(I-V)的量測系統................24 4.1.2. 光功率對電流(L-I)之量測系統..............24 4.1.3. 遠場(Far field)之量測系統................25 4.1.4. 近場(Near field)投影之量測系統...........25 4.1.5. 頻譜(Spectrum) 之量測系統................26 4.1.6. 頻寬(Bandwidth)之量測系統................26 4.1.7. 眼圖(Eye pattern)之量測系統..............27 4.2 單模態型VCSEL量測結果.......................28 4.2.1. 電流對電壓(I-V)曲線....................28 4.2.2. 輸出光功率對電流(L-I)曲線..............28 4.2.3 近場(Near field)投影....................30 4.2.4 遠場(Far field)發散角...................30 4.2.5 光頻譜(Optical spectra)圖.................31 4.2.6. 頻寬(Bandwidth) 和D係數(D-factor)......32 4.2.7. S11、S21參數模擬.........................35 4.2.8. K參數(K parameter).......................37 4.2.9. 眼圖(eye pattern)量測....................39 4.3 VCSEL最佳化擴散深度分析.....................40 4.3.1. VCSEL元件結構圖..........................40 4.3.2. 電流對電壓曲線和光功率對電流曲線.........41 4.3.3. 近場投影和光頻譜圖.......................43 4.3.4. 遠場(Far field)發散角....................46 4.3.5. 調準限度(Alignment tolerance)...........48 4.3.6. 頻寬(Bandwidth)..........................49 4.3.7. D係數(D-factor)K參數(K-parameter)......51 4.3.8. 眼圖(eye pattern)比較..................52 第五章 結論與未來研究....................................54 參考資料.................................................56

    參考資料
    [1]Hiromi Otoma, Akemi Murakami, Yasuaki Kuwata, Nobuaki Ueki, Naotaka Mukoyama, Takashi Kondo, Akira Sakamoto, Seiya Omori, Hideo Nakayama, Takeshi Nakamura, “Single-Mode Oxide-Confined VCSEL for Printers and Sensors,” in Proc. Electronics System Integration Technology Conf., vol. 1, pp. 80-85, Sep. 2006.
    [2]NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
    [3]Katsutoshi Takahashi, Hideyuki Nasu, Yoshinobu Nekado, Masayuki Iwase, Yoshikazu Ikegami, “1.1μm single mode VCSEL-base 4-channel x 10-Gbit/s parallel-optical module,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OThS1.
    [4]Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren, Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OThS3.
    [5]F.E. Doany, C.L. Schow, R.Budd, C. Baks, D.M. Kuchta, P. Pepeljugoski, J.A. Kash, F.Libsch, “Chip-to-chip board-level optical data buses,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OThS4.
    [6]C.L. Schow, F.E. Doany, C. Tsang, N. Ruiz, D. Kuchta, C. Patel, J. Knickerbocker, J. Kash, “300-Gb/s 24-Channel Full-Duplex 850-nm CMOS-Based Optical Transceivers,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OMK5.
    [7]KIRCHERER M., JAGER R., KING R., “Single- and multi-mode VCSELs for 12.5 Gb/s data links,” Lasers and Electro-Optics Europe, 2000 Conf. Dig., Nice, France, Paper CTuG2.
    [8] R. Tao, M. Berroth, Zhi Gong Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett., vol. 39, no. 24, Nov. 2003.
    [9]H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329-2330, 1979.
    [10] K. Iga, S. Ishikawa, S. Ohkouchi, T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp. 348-350, 1984.
    [11] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
    [12] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234, 1990.
    [13] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004.
    [14] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
    [15] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. 2004.
    [16] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep. 2001.
    [17] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang, “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, 1990.
    [18] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser,” Soc. Photo-opt Instrun. Eng., vol. 1418, pp. 414-421, 1991.
    [19] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, ”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780-1782, 1991.
    [20] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart, “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, 1993.
    [21] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion,” J. Appl. Phys., vol. 55, pp. 607, 1984.
    [22] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,“ Appl. Phys. Lett., vol. 38, 776, 1981.
    [23] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Technol., 4, pp. 841-846, 1989.
    [24] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年).
    [25] R. G. Hunsperger, “Integrated Optics:Theory and Technology,” Hong Kong, Springer-Verlag, 77, 1992.
    [26] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett., vol. 47, pp. 1193, 1985.
    [27] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 57, pp. 218-220, 1990.
    [28] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, pp. 3770, 1965.
    [29] M. Ochiai, Appl. Phys. Lett., vol. 68, pp. 1898, 1996 and J. H. Kim , Appl. Phys. Lett., vol. 69, pp. 3357, 1996.
    [30] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE Journal of selected topics in quantum electronics, vol. 3, no. 3, June 1997.
    [31] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., 7, 1237, 1995.
    [32] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent no.5, 262, 360, 1993.
    [33] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., 69, pp. 1935-1837, 1996.
    [34] K. L. Lear, R. P. Schneidner, Jr., K. D.
    Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 740-742, 1996.
    [35] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp. 1723-1725, 1995.
    [36] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp. 3413-3415, 1995.
    [37] Hermann A. Haus, ”Waves and Fields in Optoelectronics,” 1984.
    [38] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photon. Technol. Lett., 13, pp. 266, 2001.
    [39] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
    [40] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 33, 1810-1824, 1997.
    [41] Å. Haglund, S. J. Gustavsson, J. Vuk˘usic´, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarisation stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett., vol. 41, no. 14, pp. 805–807, July 2005.
    [42] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
    [43] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
    [44] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley, Oct. 1995.
    [45] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
    [46] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
    [47] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects,” IEEE Journal of selected topics in quantum electronics, no. 5, Sep. / Oct. 2007.
    [48] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
    [49] Martin Stach, Fernando Rinaldi, Manikandan Chandran, Steffen Lorch, Rainer Michalzik, “Bidirectional Optical Interconnection at Gb/s Data Rates With Monolithically Integrated VCSEL-MSM Transceiver Chips,” IEEE Photon. Technol. Lett., vol. 18, no. 22, Nov. 2006.
    [50] M. Stach, F. Rinaldi, M. Chandran, S. Lorch, R. Michalzik, “Monolithically integrated GaAs-based transceiver chips for bidirectional optical data transmission,” Electron. Lett., vol. 42, no. 12, June 2006.

    QR CODE
    :::